

BioMOBY Asynchronous Service Call Proposal

Call Proposal GNV5-06/01

 (v 2.2)

Contributions:
Enrique de Andrés

José-María Fernández
Johan Karlsson
Sergio Ramírez

José Manuel Rodríguez Carrasco
Roman Rosset

Coordinators: Oswaldo Trelles, David González-Pisano

Node GNV-5: Integrated Bioinformatics
University of Málaga

Málaga, 07 August 2006

BioMOBY Asynchronous Service Call Proposal

- 2 - 07/08/2006

1. - Preliminaries

Throughout this document, we will assume that the reader is already familiar with the basic
concepts of BioMOBY. For more information about BioMOBY, please study the official
documentation1.

This document contains the proposal from INB2 of how to deal with asynchronous services in
BioMOBY. The proposal is a result of discussions during the INB Meeting in Málaga (July,
2005) with the participation of Martin Senger and Edward Kawas, and in the INB mailing lists.
During further discussion in the “MOBY-dev” mailing list, a suggestion was put forward to
investigate if it was possible to base the messaging on an OASIS standard called WSRF.

The aim of the proposal is to contribute to the standardisation of asynchronous service calls in
BioMOBY. A new extended set of service calling operations and defined XML messages are
detailed.

The main motivation for the proposal is to facilitate the implementation of “long-running”
services, i.e. services that demand enough computational resources to need more than a few
minutes to compute the result.

1 http://www.biomoby.org
2 Instituto Nacional de Bioinformática (INB), Spain, http://www.inab.org

BioMOBY Asynchronous Service Call Proposal

- 3 - 07/08/2006

2- Current BioMOBY specification

In the MOBY-S 0.86.3 version of the BioMOBY API, services present their interfaces as Simple
Object Access Protocol (SOAP3) RPC.

Table 1 - Current BioMOBY definition of “MOBY compliant service”

A service can be called through a single procedure (operation), by using the name the service
was registered with in the MOBY Central catalog.

Table 1 - Current BioMOBY specification for SOAP RPC calls

HTTP is the usual transport protocol. Although not forced by the BioMOBY specification, most
of BioMOBY service providers install a web server that handles the SOAP requests.

Table 2 - from “Constructing MOBY-S Compliant Services”

Several problems related to long-running services have been identified in the current BioMOBY
specification. The same transaction is used to request the execution of a service and to wait for
the results. This causes the system to remain occupied and non-responsive in the meanwhile.
Also, it is a de facto standard to set a connection timeout both in server and clients, closing the
socket being used for client-service communication. Often the connection timeout is no more
than a few minutes, making it impossible to call long-running services.

3 http://www.w3.org/TR/soap/

A MOBY compliant service (registered as having the service protocol "moby") is one that uses only object/service
classes defined in the MOBY Central registry, presents its service interface via SOAP, and registers this service
interface in MOBY Central. In the coming months it will be expanded to allow the registration of non-MOBY SOAP
services, as well as CGI services, but this will not affect the API described below for MOBY-SOAP services.

The most straightforward paradigm is to have a single SOAP server running as a CGI script, and this listener
hands-off requests to the appropriate code module as requests arrive.

After retrieving a service description (currently in the form of a simplistic, but legitimate, WSDL document) from
MOBY Central, client programs will subsequently communicate directly with the service provider, first by sending a
request, in the form of an input message and then, if all goes well, by receiving an output message. The
communication takes the form of a very simplistic SOAP RPC call: the name of the remote procedure call is the
same as that when it was registered in MOBY Central.

The URI (uniform resource identifier) looks like a URL (uniform resource locator), but is subtly different. Where a
URL is the address of a document on the Internet, a URI is an abstract identifier which allows the service to be
uniquely identified.

At this time, the URI for this procedure call is always http://biomoby.org, as in:

 http://biomoby.org/#your_procedure_call_name

This is regardless of the URI for the service provider! This is useful because the same service might be available
from several providers. If they all use the same URI, then a computer (or human) can infer that they are equivalent,
and swap one for the other, based on availability, or other criteria.

BioMOBY Asynchronous Service Call Proposal

- 4 - 07/08/2006

Figure 1 – Illustration of the problem with long-running services in the current BioMOBY specification

BioMOBY Asynchronous Service Call Proposal

- 5 - 07/08/2006

3- Specification of proposal
To enable calls to long-running services, it is better to dedicate a separate connection for each
step (thereby using an asynchronous communication model). Unfortunately, the current
BioMOBY specification does not support this.

In this chapter, we suggest how to add such support to the BioMOBY specification. We have
selected a polling approach. This requires that the service maintains a state. Therefore, we will
use an OASIS standard called WSRF to help implementation of state-aware services.

Before we continue, let us describe some concepts that we will use throughout this document:

Batch-call (or session):

This is a service invocation and corresponds to one MOBY/mobyContent message.

Job:

A job is one of the multiple service execution requests that belongs to a service invocation,
and corresponds to one mobyData message.

3.1. WSRF - Web Services Resource Framework

In this section we aim to provide a brief, general overview of WSRF. Those interested in details
of WSRF and the operations defined there are invited to study the documentation4.

WSRF is an OASIS standard that can be used to implement interoperable state-aware web-
services (WS). WSRF uses the W3C standard WS-Addressing to achieve transport-neutral
addressing for web-services. The concept of End-Point-References (EPR) is central in WS-
Addressing. An EPR is used to refer to a specific service instance.

End Point Reference (EPR)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:EndpointReference>
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 <wsa:ReferenceParameters>
 <rpimpl:ServiceInvocationId>89</rpimpl:ServiceInvocationId>
 </wsa:ReferenceParameters>
 </wsa:EndpointReference>
 ...
 </soap:Header>
 <soap:Body>
 ...
 </soap:Body>
</soap:Envelope>

Table 1: General example of EPR for service MyService.

An EPR is returned by a WS-Addressing compliant service as a response to an invocation of
the service. An EPR can hold several fields but important for this proposal are the Address and
ReferenceParameters fields. The Address tells the client what URL should be used in future
communication (it may or may not be the same as the HTTP connection URL). The optional
ReferenceParameters field contains an opaque reference to the specific service instance at the
Address URL (similar to a ticket or identifier). The EPR is used by the client and the service in
subsequent message exchanges.

A central WSRF concept is “WS Resources”. It can be used to represent resources such as a
shopping cart, hardware such as a printer or a print job created in a printer. WSRF defines the
messages sent between client and service and API functions that the client uses to interact with
these resources. A WS Resource is represented by a property document. This document
represents the state of the resource and is communicated as XML in the SOAP body.

4 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

BioMOBY Asynchronous Service Call Proposal

- 6 - 07/08/2006

In WSRF there are several APIs that can be used:

- WS-Addressing

- WS-Notification

- WS-Policy

- WS-Security.

However, only WS-Addressing is mandatory. The mandatory operations defined there by WSRF
must be implemented by all WSRF web-services. For a full list and information which operations
are mandatory and which are optional, please see the official WSRF documentation.

A WS Resource consists of a set of properties (called a document), each with a particular name
that is unique within the document. Interaction with WS Resource properties from the client (for
example to get or set the value of the properties) is performed by using operations from the WS-
Resource specification. If a call with such an API function fails, there are several pre-defined
error messages (called Faults). These Faults can also be extended to provide service-specific
error messages.

Since WSRF is WS-Addressing compliant, any WSRF compliant service must use an EPR to
refer to a particular WS Resource.

3.2. Operations, faults and properties

We propose that asynchronous BioMOBY services represent a batch-call as one WS Resource
and therefore that the way to refer to such a batch-call is by using the EPR.

A BioMOBY asynchronous service must implement the following WSRF operations5:

• GetResourceProperty: This mandatory WSRF operation (from WS-Resource) allows a
requestor to retrieve the value of a single resource property of a WS-Resource.

• GetMultipleResourceProperties: This optional WSRF operation (from WS-Resource)
allows a requestor to retrieve the values of multiple resource properties of a WS-
Resource.

• Destroy: This optional WSRF operation (from WS-ResourceLifetime) allows a service
requestor to request the immediate destruction of a WS-Resource.

Furthermore, both BioMOBY asynchronous services and BioMOBY asynchronous clients must
be able to process the following standard WSRF faults.

• ResourceUnknownFault: Used to indicate that the resource identified in the message is
not known to the Web service.

• ResourceUnavailableFault: Used to indicate that the Web service is active, but unable
to provide access to the resource.

• InvalidResourcePropertyQNameFault: Used to indicate that resource property specified
in the request message did not correspond to a resource property element of the WS-
Resource referred to in the request message.

• ResourceNotDestroyedFault: Used to indicate that a WS-Resource was not destroyed
for some reason.

5 For a detailed documentation about each WSRF specification, operation and fault, please see
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

BioMOBY Asynchronous Service Call Proposal

- 7 - 07/08/2006

The following groups of properties are mandatory for a BioMOBY asynchronous service:

• Status properties:

o This group represents the status of the jobs resulting from a batch-call. The
batch-call itself is identified through the EPR, so the name of the property will
be used to identify the job. The service must have a property called
“status_queryID” for each job (input mobyData). For example, if a batch-call
contains two jobs with queryIDs q1 and q2, these properties must exist:
“status_q1” and “status_q2”. The status will be given using the OMG’s LSAE
standard6 schema for Notification Events.

• Result properties:

o This group represents the result from the particular jobs belonging to a batch-
call. If a client asks for a result property before a particular job has finished, an
WSRF Fault “InvalidResourcePropertyQNameFault” will be returned. The
batch-call itself is identified through the EPR, so the name of the property will
be used to identify the job. The properties are named in a similar way as the
status properties but following the pattern “result_queryID”.

Please note, that these properties must be read-only. WSRF specifies some optional operations
that can be used to delete or modify such properties. The easiest way to not allow access to
these operations is to simply not implement them (resulting in a SOAP client fault if a client tries
to call them). However, if a service author wishes to implement these operations for modification
of other properties of a batch-job not specified here, any attempt to change the properties
discussed in this proposal must be stopped on the implementation level and an additional
WSRF Fault should be returned by the service (“UnableToModifyResourcePropertyFault”)
signaling that these properties are read-only.

3.3. Registering asynchronous services

Services must be able to indicate to clients if their services can work in an asynchronous mode
or not. Such information must be made part of the service registration procedure. We propose
to add a Boolean parameter to the service registration API call (asynchronous).
For reasons of compatibility with synchronous clients, it is mandatory to provide a synchronous
version of the service. As before, only the synchronous service will be registered in
MobyCentral.

 If a service is provided in synchronous mode only (asynchronous=false), the service
provider will implement just one SOAP operation that is named exactly like the service (e.g.
doBlastAnalysis).

 If a service is provided in asynchronous mode (asynchronous=true), the service provider
must implement the following SOAP operations (in addition to the synchronous operation
used for synchronous mode):

o For submitting (starting) a job:
 The service name registered in MobyCentral with _submit appended

(e.g. doBlastAnalysis_submit)
o For polling the status of a job:

 GetResourceProperty/GetMultipleResourceProperties for the property
“status_qname”, where qname is the queryID of the corresponding
mobyData input.

6 Life Sciences Analysis Engine (LSAE) final adopted specification - http://www.omg.org/cgi-bin/doc?dtc/2005-04-01
BioMOBY clients must be able to understand the pre-defined events in this specification: Heartbeat event, Percent
progress event, Job State changed event, Step progress event, Time progress event. For more information, please
check the LSAE specification.

BioMOBY Asynchronous Service Call Proposal

- 8 - 07/08/2006

o For retrieving results of a job/jobs:
 GetResourceProperty/GetMultipleResourceProperties for the

property/properties “result_qname”, where qname is the query name of
the corresponding mobyData input.

o For destroying a job:
 Destroy for the batch-call identifier created during submission.

Please note that although the service provider must implement and publish these additional
operations, only the synchronous version will be registered in MobyCentral. If asynchronous
equals true during service registration, MobyCentral (the registry) will produce WSDL for the
additional SOAP methods (and, of course, the service must implement these SOAP methods).
Therefore, the knowledge if a service can be called in an asynchronous way must be stored in
the registry.
Even if a service is asynchronous, it must always be possible7 to call it in a synchronous mode.
Naturally, in this case it is possible (as before) that the connection between client and service is
closed because of a timeout.
3.3. Determining if a service is asynchronous capable

A client discovers services by using the findService8 API call of BioMOBY. We suggest allowing
a new value in the input field protocol and the output field category 'moby-async', adding to the
normal values 'moby', 'cgi' and 'soap'.
In BioMOBY, clients receive a WSDL from MobyCentral by using the retreiveService operation
from the BioMOBY API. Clearly, the operations relating to WSRF must also be described in the
WSDL9 that MobyCentral generates.
The ability to call a service asynchronously can also be deduced from LSID resolution10
(returning RDF describing the service). Here, we suggest that this information should be stored
in the form of a "hasCallingDetail" parameter, where one of the properties of a callingDetail
includes whether it is asynchronous or not (remember, that according to the proposal,
asynchronous also implies that there is a synchronous way to call the service).
An example as N3:
 a :operation;
 :hasCallingDetail [
 a :callingDetail;
 :hasSynchType moby:asynchronous];

An example as RDF:
 <hasOperation rdf:parseType="Resource">
 <rdf:type rdf:resource="http://www.mygrid.org.uk/ontology#operation"/>
 <hasCallingDetail rdf:parseType="Resource">
 <rdf:type rdf:resource="http://www.mygrid.org.uk/ontology#callingDetail"/>
 <hasSynchType rdf:resource="http://biomoby.org/RESOURCES/MOBY-S/ServiceDescription#asynchronous"/>
 </hasCallingDetail>
 …
 </hasOperation>

7 Note that the SOAP method should be available. If, however, the author of the service knows that the service will
never finish before a time-out, it is reasonable to return an empty result directly together with a MobyException with
error code 701 (Specific errors from the BioMOBY service) and the message “Service must be invoked
asynchronously.”.
8 First, we note that the fields protocol and category fields are named differently but represent the same thing in the
input and output. It would be better to keep a consistent naming. Second, the fact that a service is capable of
asynchronous communication is by itself not a reason to choose this service over another synchronous-only service.
9 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
10 http://biomoby.open-bio.org/index.php/for-developers/moby_extensions/moby_metadata

BioMOBY Asynchronous Service Call Proposal

- 9 - 07/08/2006

3.3. Invoking asynchronous services – Communication sequence

The sequence for an asynchronous MOBY service execution is the following:

A. The client starts the session

• If the client is only capable of synchronous communication, the services (both sync and
async) will work in synchronous mode (current BioMOBY behavior)

• If the client and service are capable of asynchronous communication, the client sends
the request message to the servicename_submit SOAP operation to inform the
service that they wish to run the service in asynchronous mode, and that it is able to
cope with asynchronous calls. The message contains the standard MOBY content and
data needed to execute the service.

If the service is synchronous, then it will construct the result and return it. However,
asynchronous services will accept the task and return back a WSRF message (containing a
batch-call identifier or “ticket” inside of an EPR), instead of the actual result. From this point
both client and server will work in asynchronous modes.

B. Polling for service execution status
The client uses the GetResourceProperty/GetMultipleResourceProperties WSRF
operation to retrieve status information using the batch-call identifier (in the EPR) and the
queryID of the corresponding mobyData input. This step can be repeated as many times as
needed until the service execution is done and the result is ready, using the SOAP
operation to periodically request for execution status information. Additional notification
information (i.e. “step 2: sequence alignment done”) can be included to report progress
status from the requested service to the client.

C. Request service execution result
When the client receives a status from the service that indicates that the execution is
completed, the client can ask the service for the result by sending a message containing the
asynchronous batch-call identifier and queryID to the GetResourceProperty/
GetMultipleResourceProperties WSRF operation for the properties in the “result” group.

The response from this operation call will contain WS Resource properties whose formats
are MOBY compatible and will include, any MobyExceptions that might have occurred11.
These properties are all available until the resource is no longer available. A resource
becomes unavailable when the service either by its own initiative cleans the result or after a
client explicitly asks that the resource is cleaned.

D. The client destroys the session
Once the client has retrieved the results of all jobs and do not wish to retrieve them again, it
should destroy the session created during the step A. This is done by sending a message
containing the EPR to the Destroy WSRF operation12.

11 Note that this means that if an error relating to Moby happens (for example, not properly formatted BioMOBY input or
invalid object), then the proper way to handle this situation is the following: report a status using LSAE that signals that
the job is finished (several options in LSAE for this) and then report a result as a normal Moby message with whatever
MobyException that is suitable.
12 It is possible that the service provider by his own initiative cleans the results of old batch-calls. This depends however
on the policy of the service provider and this proposal does not specify any “minimum” time that the results should be
available but clearly most providers might want to clean “old” results at some point. If the resource has been cleaned
and a client request the resource then the service should respond with the WSRF Fault “ResourceUnknownFault” (since
there no longer exists any trace of this resource/batch-call)

BioMOBY Asynchronous Service Call Proposal

- 10 - 07/08/2006

Sequence diagram for an async-async communication using BioMOBY

BioMOBY Asynchronous Service Call Proposal

- 11 - 07/08/2006

3.4. Asynchronous messages

Service execution request is the only message that will follow exactly the normal BioMOBY
standard, the other messages will be WSRF messages.

Regarding error-handling: naturally, in all these SOAP calls it is possible that we get SOAP
related faults but we do not specify these here.

When using the standard WSRF operations it is possible to get the standard WSRF faults. We
give a general example in the appendix to show readers how such a fault might look like. In this
section we list the documented WSRF faults in each situation. For more information about
WSRF operations and faults, we again refer the reader to the official WSRF documentation.

The messages are as follows:

1. Requesting asynchronous service execution: This message is identical to the
BioMOBY XML to request synchronous service execution. The only difference is that
the client sends the request to the servicename_submit SOAP method.

SOAP XML request for asynchronous service execution (Unmodified)

<soap:Envelope>
 <soap:Header>
 ...
 </soap:Header>
 <soap:Body>
 <servicename_submit>
 <moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyData queryID='queryId00'>
 <!--- Standard BioMOBY XML for Input -->
 </moby:mobyData>
 <moby:mobyData queryID='queryId01'>
 <!--- Standard BioMOBY XML for Input -->
 </moby:mobyData>
 ...
 </moby:mobyContent>
 </moby:MOBY>
 </servicename_submit>
 </soap:Body>
</soap:Envelope>

2. Accepted asynchronous request: The service recognizes the asynchronous request,
and communicates to the client that its request was accepted and that the service will
work in asynchronous mode. For this accepted asynchronous request (and for the
polling, and polling response operations), a standard WSRF message is sent,
containing two important parts in the EPR:

 Address: This is the address where the EPR is a valid reference to the
resulting batch-call.

 ReferenceParameters: The ticket representing the service provider identifier
for the service execution job. The value of this ticket has no intrinsic meaning.
The service provider can choose it be any legal XML fragment. Clients should
not attempt to interpret the value of the ticket; it is simply an identifier and
should remain opaque from the point of view of the client.

BioMOBY Asynchronous Service Call Proposal

- 12 - 07/08/2006

SOAP XML response for accepted asynchronous service execution (New)

<soap:Envelope>
 <soap:Header>
 ...
 </soap:Header>
 <soap:Body>
 <servicename_submitResponse>
 <wsa:EndpointReference>
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 <wsa:ReferenceParameters>
 <rpimpl:ServiceInvocationId>ID</rpimpl:ServiceInvocationId>
 </wsa:ReferenceParameters>
 </wsa:EndpointReference>
 </servicename_submitResponse>
 </soap:Body>
</soap:Envelope>

This EndPointReference is included in the SOAP header in the subsequent messages
and is used to refer to the batch-call.

3. Polling for service status: We assume a polling model where the client queries the
service asking for the status of its request. The client makes the polling requests by
sending a message to the GetResourceProperty or GetMultipleResourceProperties
WSRF operations of the service. The structure of the polling message is a WSRF block
with the asynchronous job “ticket” (in the soap header) and the original request query
identifiers (properties status_queryID).

SOAP XML request to poll for service execution status:

 GetResourceProperty

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:To wsu:Id="To">http://myserver.com/MyService</wsa:To>
 <rpimpl:ServiceInvocationId>ID</rpimpl:ServiceInvocationId>
 ...
 </soap:Header>
 <soap:Body>
 <GetResourceProperty>status_queryId00</GetResourceProperty>
 </soap:Body>
</soap:Envelope>

SOAP XML request to poll for service execution status:

 GetMultipleResourceProperties

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:To wsu:Id="To">http://myserver.com/MyService</wsa:To>
 <rpimpl:ServiceInvocationId>ID</rpimpl:ServiceInvocationId>
 ...
 </soap:Header>
 <soap:Body>
 <GetMultipleResourceProperties>
 <wsrp:ResourceProperty>status_queryId00</wsrp:ResourceProperty>
 <wsrp:ResourceProperty>status_queryId01</wsrp:ResourceProperty>
 ...
 </GetMultipleResourceProperties>
 </soap:Body>
</soap:Envelope>

Valid fault messages are ResourceUnknownFault, ResourceUnavailableFault and
InvalidResourcePropertyQNameFault.

BioMOBY Asynchronous Service Call Proposal

- 13 - 07/08/2006

4. Response for polling request: The response sent from the service includes the
current process status for the requested query identifiers.

SOAP XML response for polling request:

GetResourceProperty

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:From wsu:Id="From">
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 </wsa:From>
 ...
 </soap:Header>
 <soap:Body>
 <GetResourcePropertyResponse>
 <lsae:status_queryId00>
 <!—- LSAE Analysis Event Block -->
 </lsae:status_queryId00>
 </GetResourcePropertyResponse>
 </soap:Body>
</soap:Envelope>

SOAP XML response for polling request:

GetMultipleResourceProperties

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:From wsu:Id="From">
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 </wsa:From>
 ...
 </soap:Header>
 <soap:Body>
 <GetMultipleResourcePropertiesResponse>
 <lsae:status_queryId00>
 <!—- LSAE Analysis Event Block -->
 </lsae:status_queryId00>
 <lsae:status_queryId01>
 <!—- LSAE Analysis Event Block -->
 </lsae:status_queryId01>
 ...
 </GetMultipleResourcePropertiesResponse>
 </soap:Body>
</soap:Envelope>

Valid fault messages are ResourceUnknownFault, ResourceUnavailableFault and
InvalidResourcePropertyQNameFault.

5. Requesting the result: Once the client knows that the service execution is finished and
that the result is ready, it should retrieve results by sending a message to the
GetResourceProperty or GetMultipleResourceProperties WSRF operations in the
server. The message structure is the same as in the step before, but in this case asking
for result_queryID properties.

SOAP XML request for the result:

GetResourceProperty

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:To wsu:Id="To">http://myserver.com/MyService</wsa:To>
 <rpimpl:ServiceInvocationId>ID</rpimpl:ServiceInvocationId>
 ...
 </soap:Header>
 <soap:Body>
 <GetResourceProperty>result_queryId00</GetResourceProperty>
 </soap:Body>
</soap:Envelope>

BioMOBY Asynchronous Service Call Proposal

- 14 - 07/08/2006

SOAP XML request for the result:

GetMultipleResourceProperties

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:To wsu:Id="To">http://myserver.com/MyService</wsa:To>
 <rpimpl:ServiceInvocationId>ID</rpimpl:ServiceInvocationId>
 ...
 </soap:Header>
 <soap:Body>
 <GetMultipleResourceProperties>
 <wsrp:ResourceProperty>result_queryId00</wsrp:ResourceProperty>
 <wsrp:ResourceProperty>result_queryId01</wsrp:ResourceProperty>
 ...
 </GetMultipleResourceProperties>
 </soap:Body>
</soap:Envelope>

6. Response for requesting the result: The content of the requested result_queryID
properties is a standard BioMOBY response message containing the result of the
service execution. Note that if a BioMOBY related error occured during the execution,
the BioMOBY response will contain empty mobyData with corresponding
mobyException.

SOAP XML response for requesting results:

GetResourceProperty

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:From wsu:Id="From">
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 </wsa:From>
 ...
 </soap:Header>
 <soap:Body>
 <GetResourcePropertyResponse>
 <moby:result_queryId00>
 <moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyData queryID='queryId00'>
 <!--- Standard BioMOBY XML for output -->
 </moby:mobyData>
 </moby:mobyContent>
 </moby:MOBY>
 </moby:result_queryId00>
 </GetResourcePropertyResponse>
 </soap:Body>
</soap:Envelope>

SOAP XML response for requesting results:

 GetMultipleResourceProperties

(New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:From wsu:Id="From">
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 </wsa:From>
 ...
 </soap:Header>
 <soap:Body>
 <GetMultipleResourcePropertiesResponse>
 <moby:result_queryId00>
 <moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyData queryID='queryId00'>
 <!--- Standard BioMOBY XML for output -->
 </moby:mobyData>
 </moby:mobyContent>
 </moby:MOBY>
 </moby:result_queryId00>
 <moby:result_queryId01>
 <moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>

BioMOBY Asynchronous Service Call Proposal

- 15 - 07/08/2006

 <moby:mobyData queryID='queryId01'>
 <!--- Standard BioMOBY XML for output -->
 </moby:mobyData>
 </moby:mobyContent>
 </moby:MOBY>
 </moby:result_queryId01>
 ...
 </GetMultipleResourcePropertiesResponse>
 </soap:Body>
</soap:Envelope>

It will be a client task (at API level) to compose a standard BioMOBY message from the
WSRF response.

Valid fault messages are ResourceUnknownFault, ResourceUnavailableFault and
InvalidResourcePropertyQNameFault.

7. Destroying the resource for asynchronous service execution: After client has
retrieved the results of all query identifiers, it should destroy the resource it was created
during asynchronous service execution request by sending a message to the Destroy
WSRF operation in the server. The structure of this message is a WSRF block with the
asynchronous job ticket (in the soap header).

SOAP XML request for destroying the resource (New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:To wsu:Id="To">http://myserver.com/MyService</wsa:To>
 <rpimpl:ServiceInvocationId>ID</rpimpl:ServiceInvocationId>
 ...
 </soap:Header>
 <soap:Body>
 <Destroy />
 </soap:Body>
</soap:Envelope>

8. Response for destroying the resource:

SOAP XML response for destroying the resource (New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:From wsu:Id="From">
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 </wsa:From>
 ...
 </soap:Header>
 <soap:Body>
 <DestroyResponse />
 </soap:Body>
</soap:Envelope>

Accepted fault messages are ResourceUnknownFault, ResourceUnavailableFault and
ResourceNotDestroyedFault.

BioMOBY Asynchronous Service Call Proposal

- 16 - 07/08/2006

APPENDIX A – WSRF Faults

In this appendix we give brief example of a WSRF Fault:

WSRF fault (New)

<soap:Envelope>
 <soap:Header>
 ...
 <wsa:From wsu:Id="From">
 <wsa:Address>http://myserver.com/MyService</wsa:Address>
 </wsa:From>
 <wsa:Action wsu:Id="Action">
 http://docs.oasis-open.org/wsrf/fault</wsa:Action>
 ...
 </soap:Header>
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>Application error</faultstring>
 <detail>
 <wsbf:FaultMessage>
 <wsbf:Timestamp>fault_timestamp</wsbf:Timestamp>
 <wsbf:Description>fault_description</wsbf:Description>
 </wsbf:FaultMessage>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

These errors come as standard SOAP Faults but with WSRF specific faults inside the details
section. All WSRF faults are extended from the standard WSRF BaseFault using the XML
Schema extension mechanism. For details, see WS-BaseFaults13.

13 http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-os.pdf

