

BioMOBY Asynchronous Service Call Proposal

Call Proposal GNV5-06/01

 (v 0.6)

Contributions:
Enrique de Andrés

José-María Fernández
Johan Karlsson
Sergio Ramírez

José Manuel Rodríguez Carrasco
Roman Rosset

Coordinators: Oswaldo Trelles, David González-Pisano

Node GNV-5: Integrated Bioinformatics
University of Málaga

Málaga, 26th January 2006

BioMOBY Asynchronous Service Call Proposal

- 2 - 26/01/2006

1. - Preliminaries

This document contains the proposal from INB1 of how to deal with asynchronous services in
BioMOBY. The proposal is a result of discussions during the INB Meeting in Málaga (July,
2005) with the participation of Martin Senger and Edward Kawas, and in the INB mailing lists.

The aim of the proposal is to contribute to the standardisation of asynchronous service calls in
BioMOBY. A new extended set of service calling methods and defined MOBY XML messages
are detailed.

The main motivation for the proposal is to facilitate the implementation of “long-running”
services, i.e. services that demand enough computational resources to need more than a few
minutes to compute the result.

1 Instituto Nacional de Bioinformática (INB), Spain

BioMOBY Asynchronous Service Call Proposal

- 3 - 26/01/2006

2- Current BioMOBY specification

In the version2 of BioMOBY currently available, services present their interfaces as Simple
Object Access Protocol (SOAP3) RPC.

Table 1 - Current BioMOBY definition of “MOBY compliant service”

A service can be called through a single procedure (method), by using the name the service
was registered with in the MOBY Central catalog.

Table 1 - Current BioMOBY specification for SOAP RPC calls

HTTP is the usual transport protocol. Although not forced by the BioMOBY specification, most
of BioMOBY service providers install a web server that handles the SOAP requests.

Table 2 - from “Constructing MOBY-S Compliant Services”

Several problems related to long-running services have been identified in the current BioMOBY
specification. The same transaction is used to request the execution of a service and to wait for
the results. This causes the system to remain occupied and non-responsive in the meanwhile.
Also, it is a de facto standard to set a connection timeout both in server and clients, closing the
socket being used for client-service communication. Often the connection timeout is no more
than a few minutes, making it impossible to call long-running services.

2 MOBY-S 0.86.3 API (web-services based)
3 http://www.w3.org/TR/soap/

A MOBY compliant service (registered as having the service protocol "moby") is one that uses only object/service
classes defined in the MOBY Central registry, presents its service interface via SOAP, and registers this service
interface in MOBY Central. In the coming months it will be expanded to allow the registration of non-MOBY SOAP
services, as well as CGI services, but this will not affect the API described below for MOBY-SOAP services.

The most straightforward paradigm is to have a single SOAP server running as a CGI script, and this listener
hands-off requests to the appropriate code module as requests arrive.

After retrieving a service description (currently in the form of an illegitimate WSDL document) from MOBY Central,
client programs will subsequently communicate directly with the service provider. The communication takes the
form of a very simplistic SOAP RPC call: the name of the remote procedure call is the same as that when it
was registered in MOBY Central. The URI (uniform resource identifier) looks like a URL (uniform resource
locator), but is subtly different. Where a URL is the address of a document on the Internet, a URI is an abstract
identifier which allows the service to be uniquely identified. At this time, the URI for this procedure call is always
http://biomoby.org, as in:

http://biomoby.org/#your_procedure_call_name

This is regardless of the URI for the service provider! This is useful because the same service might be available
from several providers. If they all use the same URI, then a computer (or human) can infer that they are equivalent,
and swap one for the other, based on availability, or other criteria. (NOTE: This becomes the SOAP Action in a
SOAP message and the WSDL document describing it; fill in appropriately for your libraries, as it is different for
Perl SOAP::Lite, Apache::Axis, and so on)

BioMOBY Asynchronous Service Call Proposal

- 4 - 26/01/2006

Figure 1 – Illustration of the problem with long-running services in the current BioMOBY specification

BioMOBY Asynchronous Service Call Proposal

- 5 - 26/01/2006

3- Specification Proposal
To enable calls to long-running services, it is better to dedicate a separate connection for each
step (asynchronous communication model). Unfortunately, the current BioMOBY specification
does not support asynchronous calls.

In this chapter, we suggest how to add such support to the BioMOBY specification.

3.1. Registering asynchronous services

Service providers must indicate to clients if their services can work in an asynchronous mode or
not. Such metadata information should be made part of the service registration procedure. We
propose to add a boolean parameter to the service registration API call (asynchronous).

As before, communication between client and service is performed with SOAP RPC calls: the
name of the remote procedure call is the same as the name of the service when it was
registered in MOBY Central, or the name with a suffix (only for asynchronous services).

 If a service is provided in synchronous mode only (asynchronous=false), the service
provider will implement just one SOAP method that is named exactly like the service (e.g.
doBlastAnalysis).

 If a service is provided in asynchronous mode (asynchronous=true), the service provider
must implement three SOAP methods (in addition to the synchronous method used for
synchronous mode) that are named exactly like the service but with appended suffixes:

o The name with _async appended (e.g. doBlastAnalysis_async)
o The name with _poll appended (e.g. doBlastAnalysis_poll)
o The name with _result appended (e.g. doBlastAnalyis_result)

Even if a service is asynchronous, it must always be possible to call it in a synchronous mode.
Naturally, if a client invoke services registered as asynchronous but in a synchronous mode, it is
possible (as before) that the connection between client and service can be closed due to
timeouts. While a synchronous method is mandatory for every service, asynchronous methods
are optional, and they must only be implemented if a service has been registered as
asynchronous.

A client that needs to find out if a service is capable of asynchronism must check the service
metadata. The proper way to do this has been suggested in RFC 1914: use the LSID of the
service to get back metadata as RDF.

To store such information in the RDF metadata we need a new tag, for example:

<mobyPred:isAsynchronous rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">

true
</mobyPred:isAsynchronous>

BioMOBY Asynchronous Service Call Proposal

- 6 - 26/01/2006

3.2. Invoking asynchronous services – Communication sequence

The sequence for an asynchronous MOBY service execution is the following:

A. The client starts the session

• If the client is only capable of synchronous communication, the services (both sync and
async) will work in synchronous mode (current BioMOBY behavior)

• If the client and service are capable of asynchronous communication, the client sends
the request message to the servicename_async SOAP method to inform the service
that they wish to run the service in asynchronous mode, and that it is able to cope with
asynchronous calls. The message contains the standard MOBY content and data
needed to execute the service.

B. The server accepts the client request
Asynchronous services will accept the task and return back a MOBY message where an
identifier for the job and status information is sent back to the client, instead of the actual result.
From this point both client and server will work in asynchronous modes.
C. Polling for service execution status

• The client asks the service for the status of the execution using the job identifier
obtained in the previous step and the service returns a service execution status
message. This step can be repeated as many times as needed until the service
execution is done and the result is ready, using the servicename_poll SOAP
method to periodically request for execution status information. Additional notification
information (i.e. “step 2: sequence alignment done”) can be included to report progress
status from the requested service to the client.

D. Service returns the result
When the client receives a status from the service that indicates that the execution is
completed, the client can ask the service for the result by sending a message containing the
asynchronous job identifier to the servicename_result SOAP method.

BioMOBY Asynchronous Service Call Proposal

- 7 - 26/01/2006

Sequence diagram for an async-async communication using BioMOBY

BioMOBY Asynchronous Service Call Proposal

- 8 - 26/01/2006

3.3. Asynchronous messages

The BioMOBY XML for service execution request and for result response will keep the original
BioMOBY structure because they are data messages (containing the parameters and response
sent to or received from the service).

The messages are as follows:

1. Requesting asynchronous service execution: The MOBY XML message is identical

to the MOBY XML to request synchronous service execution. The only difference is that
the client sends the request to the servicename_async method.

XML request for asynchronous service execution (Unmodified)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyData queryID='1'>
 <!--- Standard BioMOBY XML for Input -->
 </moby:mobyData>
 </moby:mobyContent>
</moby:MOBY>

2. Accepted asynchronous request: The service recognizes the asynchronous request,

and communicates to the client that its request was accepted and that the service will
work in asynchronous mode. For this accepted asynchronous request (and for the
polling, and polling response methods), the information that is being sent between the
client and the service provider does not contain any standard BioMOBY data, but
requests and information about the status of the execution. A mobyStatus block
carries this kind information for each mobyData request. mobyStatus has two
attributes:

 queryID: The service provider must assign the same queryID coming from

the associated mobyData element. This way, each mobyStatus is associated
to one input mobyData

 asyncID: The ticket representing the service provider identifier for the service
execution job. The value of asyncID has no intrinsic meaning. The service
provider should choose it be any legal XML attribute value, such that it is
unique to each mobyStatus in the message. Clients should not attempt to
interpret the value of asyncID; it is simply an identifier.

XML response for accepted asynchronous service execution (New)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyStatus queryID="1" asyncID="89">
 <!—- LSAE Analysis Event Block -->
 </moby:mobyStatus>
 </moby:mobyContent>
</moby:MOBY>

The asynchronous choreography (poll requests and event notifications) implies the
requesting of information by the client and the sending of that information from the
service provider. That notification information is embedded into the mobyStatus tag
using the OMG’s LSAE standard4 schema for Notification Events. Clients should be
able to handle the five standard events defined there. If a service provider wants to
define a non-standard event (allowed in the standard), then only specialized clients

4 Life Sciences Analysis Engine (LSAE) final adopted specification - http://www.omg.org/cgi-bin/doc?dtc/2005-04-01

BioMOBY Asynchronous Service Call Proposal

- 9 - 26/01/2006

would be able to understand the meaning of the event. In fact, according to the LSAE
standard, clients should ignore events they do not understand.

Example XML response for accepted asynchronous service execution (New)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyStatus queryID="1" asyncID="89">
 <lsae:analysis_event>
 <message>Service execution started</message>
 <state_changed new_state="created"/>
 </lsae:analysis_event>
 </moby:mobyStatus>
 </moby:mobyContent>
</moby:MOBY>

In an analogous way to the mobyData block, if the request of an asynchronous service
fails, the XML response will be an empty mobyStatus block (there is the option to add
a corresponding mobyException to describe the problem):

XML response for not accepted asynchronous service execution (New)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyStatus queryID="1"/>
 </moby:mobyContent>
</moby:MOBY>

 According to the MOBY-S 0.86.3 API, exception reporting is limited to refer to
 mobyData. We suggest to also allow refQueryID in mobyException to be used to refer
 to mobyStatus elements in a similar way.

3. Polling for service status: We assume a polling model where the client queries the

service asking for the status of its request. The client makes the polling requests by
sending a message to the servicename_poll SOAP method in the server. Again, the
MOBY XML is a polling query, and does not contain data in the normal Moby sense.
The structure of the polling test message is a mobyStatus block with the asynchronous
job ticket (attribute asyncID) and the original request query identifier (queryID).

XML request to poll for service execution status (New)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyStatus queryID="1" asyncID="89"/>
 </moby:mobyContent>
</moby:MOBY>

4. Response for polling test: The MOBY XML sent from the service is similar to that in

step 2, but the status element includes the current process status. The asyncID
attribute is also present, containing the ticket for the process at the service side.

XML response for polling request (New)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyStatus queryID="1" asyncID="89">
 <!—- LSAE Analysis Event Block -->
 </moby:mobyStatus>
 </moby:mobyContent>
</moby:MOBY>

BioMOBY Asynchronous Service Call Proposal

- 10 - 26/01/2006

As before, The XML polling response in case of an error is an empty mobyStatus tag,
possibly with an added mobyException:

XML response for polling request failure (New)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyStatus queryID="1"/>
 </moby:mobyContent>
</moby:MOBY>

5. Requesting the result: Once the client is notified that the service execution is

completed and that the result is ready, it should call the servicename_result SOAP
method, including the ticket to retrieve the final result. The message structure is the
same as in the step before, but sent to a different method.

XML request for the result (New)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyStatus queryID="1" asyncID="89"/>
 </moby:mobyContent>
</moby:MOBY>

6. Sending the result: If the client requests the result from the servicename_result
method, a standard BioMOBY response message is sent back to the client with the
result of the service execution.

XML of a standard BioMOBY Service Response (Unmodified)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyData queryID='1'>
 <!-- Standard BioMOBY XML for Output -->
 </moby:mobyData>
 </moby:mobyContent>
</moby:MOBY>

The XML code for the obtaining result response in case of failure will have an empty
mobyData block:

XML of a failing BioMOBY Service Response (Unmodified)

<?xml version="1.0" encoding="UTF-8"?>
<moby:MOBY xmlns:moby='http://www.biomoby.org/moby-s'>
 <moby:mobyContent>
 <moby:mobyData queryID='1'/>
 </moby:mobyContent>
</moby:MOBY>

