Helt, Gregg A.

DAS2: A Distributed Genome Annotation System
Specific Aims

Access to and integration of biological information continues to be a critical problem in biology. This is particularly clear in genome informatics. Annotations of genome sequences are distributed across many databases, each with their own different protocols for extracting the desired information. Attempting to integrate data from these different repositories is a challenging task, and one that both lab and computational biologists working with genomic data face often.

To address this problem, we propose to significantly extend and enhance the Distributed Annotation System (DAS). DAS is an existing specification for sharing distributed annotations of biological sequences. DAS allows researchers to integrate biological information from many different sources via standardized queries and responses across the Web. DAS has gained momentum over the last two years as a method for serving, accessing, and viewing annotations of the human genome and a number of model organism genomes.

Despite its success the current version of DAS has a number of problems, and there have been many discussions on the DAS mailing list of how best to improve it, ranging from minor modifications to complete overhauls. It has become clear that a major revision of the DAS protocol is needed. We propose to integrate many of the suggestions from DAS developer and user community to produce a new version of DAS, DAS2. Specifically, we intend to:
1. Create, document, and publish a DAS 2.0 specification that incorporates many of the requests made by the DAS developer and user community. This will include web services capabilities to enable DAS2 clients to dynamically discover DAS2 servers, numerous improvements in how DAS2 represents sequence features, and a “writeback” facility that allows DAS2 clients to publish data directly to DAS2 servers
2. Provide a freely available open-source implementation of a DAS2 validation suite
3. Provide a freely available open-source implementation of a DAS2 server, including an API to support layering a DAS2 server on top of standard relational databases.
4. Provide a freely available open-source implementation of a DAS2 client that supports visualization and integration of sequence annotations from multiple DAS2 servers (and legacy DAS 1.x servers), as well as annotation curation and editing.
5. Integrate DAS2 improvements into Ensembl to provide improved access to Ensembl data on DAS2 servers, improved web browsing of Ensembl data, and support for third party annotations via the DAS2 writeback facility.
6. Interact with a number of other model organism databases to promote accessibility of their data via the DAS2 protocol.

7. Interact with the bioMOBY project to establish bioMOBY as a registry service for DAS2 servers (and discovery service for DAS2 clients).

The work in this proposal will be performed as a collaboration between Affymetrix Inc., Cold Spring Harbor Labs, and Sanger Center, with consulting provided by Dalke Scientific.
Background & Rationale
The Distributed Annotation System (DAS) is a software protocol designed for sharing genome annotations and other features. The idea for DAS arose from discussions between Lincoln Stein, Sean Eddy and Ladeana Hillier in the fall of 1999. The complete genome of the C. elegans nematode had recently been published 1, and a large number of bioinformatics and experimental groups were gearing up to exploit the first animal genome. At that time, there was no central online database for C. elegans biology,
 and the dominant mechanism for sharing and publishing information about the C. elegans genome was the ACeDB database management system. Under this model, copies of the entire database were made available via an FTP site at the Sanger Centre. Researchers downloaded this database to their laboratory computers, and accessed it via local copies of ACeDB. Researchers could add their own data to their local ACeDB copies, make corrections to gene predictions and another genomic annotations, and in theory send their locally-modified databases back to the Sanger Centre for integration into the master ACeDB copy. In practice, however, the task of integrating many diverged local copies of the database was next to impossible, and most of the contributions that researchers made to the genomic annotation effort were lost.

The solution that we envisioned was a protocol for describing and exchanging genomic annotation data that would allow experimentalists and bioinformatics groups to share annotations easily. The system needed to be platform-independent, Internet-ready, and sufficiently lightweight to be implemented by busy bioinformatics support personnel. It should be possible for annotation groups to exchange and integrate bulk data, and for individual biological researchers to integrate data “on the fly” using a viewer application that would fetch genome annotations from multiple sites and construct a single integrated graphical view of a region of interest. Most importantly, the process of annotating and integrating genomic information should not be reliant on a central coordinating authority; research groups should be free to publish their data via the system without first gaining permission from the administrators of a central database.

The main challenge to designing such a protocol is the complexity of genomic data. One large problem is the issue of clashing coordinate systems. Some groups will generate annotations in chromosome-relative coordinates, while others will annotate contigs, and still others annotate sequenced clones, or accessioned Genbank entries. Integrating such data requires an understanding of how one coordinate system maps onto the other. Another problem is the sheer bulk of the data. A Genbank or EMBL entry that describes annotations on a megabase or more of genomic sequence can be huge, and is not practical for interactive viewing and exploration. Finally, there is the issue of semantics. While the Genbank and EMBL data formats define standard feature types, there is little uniformity in how they are used. For example, some groups annotate the substructure of spliced genes using the Genbank/EMBL “exon” feature type, while others use “CDS.” Some groups use the “gene” feature type, and others prefer “primary_transcript.”

The idea we worked out forms the core architecture of DAS, and is diagrammed in Figure 1 and described in detail in Dowell et al. 2001 and at http://www.biodas.org2. In the DAS architecture all sharing of genomic data occurs across the Internet via two types of network servers. The reference server provides basic information about a genome, including the details of the genomic assembly and the ability to return the DNA of a selected portion of the genome. The main responsibility of the reference server is to provide the information needed to translate from one coordinate system into another.

[image: image2.png]File View Bookmarks

23580000 23600000 23620000 23640000 23660000 23680000 23700000 23720000

Figure 1: The DAS architecture consists of reference servers that provide mapping and assembly data, and annotation servers that provide annotations on top of the assembly.

Annotation servers provide information about genome sequence annotations. Given a region of interest on the genome, they return a list of records describing the position and type of experimental data, the output of analytic software, and notes, as well as pointers (URLs) for obtaining additional information. Groups that run annotation servers are free to annotate against any component of the genomic assembly that is known to the corresponding reference server. For example, one group could annotate against Genbank entries, while another could annotate against Golden Path contigs; provided that the reference server provides both Genbank and Golden Path contigs as a valid components of its assembly, the system will resolve the two sets of annotations into a single coordinate space for the purposes of comparison and integration.

By intent, this architecture supports the creation of “genome viewers” which can be used as universal browsers to fetch, display and manipulate the information served up by any number of DAS-compliant servers. In Figure 1, for example, the client on the left has connected to a reference server and to annotation servers 1 and 2, creating a customized view that shows the genome assembly served by the reference server overlaid with tracks containing predicted genes served by annotation server 1, and single nucleotide polymorphisms (SNPs) served by annotation server 2. The client on the right has connected to a different set of annotation servers, thereby generating a customized view which displays SNPs from annotation server 2 in the context of genetic markers served by annotation server 3.

Because of the rapid flux of genomic assemblies and annotations, we chose to make the reference server authoritative for a particular genome assembly. Although we weren’t certain about this at the time, we were correct in predicting that such authorative maps would arise spontaneously, as happened for example with the NCBI human genome assembly which is used as the coordinate system by all major human genome annotation projects. To prevent version skew between annotations performed on different versions of the assembly, we required that the system support a system of version checks so that annotations can be carried forward from older versions of an assembly to newer ones provided that the underlying DNA hasn’t changed.

To make rapid interactive browsing and discovery possible, we designed the protocol so that both reference and annotation servers could respond to requests for subregions of the genome. For example if a researcher is only interested in the region spanning bases 1000-2000 on chromosome 1, the protocol would only need to transmit the information relating to this part of the genome.

 To make the protocol lightweight and easy enough for busy data providers to implement, we decided that DAS should run on top of the standard HTTP protocol and to use the popular XML syntax for all its messages.

Not knowing exactly how DAS would be used, we deferred the thorny problem of semantic uniformity, instead deciding to provide the protocol with a simple but loose category/type system for describing the nature of annotations. For example, DAS defines a “transcription” category, and the “exon” type is a member of this category. Annotators are free to use the existing DAS types or to define their own adding new types to existing categories.

Work on the DAS protocol commenced in early 2000 and resulted in the first draft specification in the spring of that year. This was followed by a prototype implementation of an ACeDB-based server, and a web-based client. These were used extensively for testing and refinement of the protocol during the spring and summer of 2000, culminating in the release of a 0.98 specification to the public in September 2000. This was followed by a long period of public comment and several Java and Perl-based implementations both within the core DAS development group and by interested parties in the BioJava and BioPerl communities. The version 1.0 release of the specification occurred a year after the initial release, on September 23, 2001. The next major change to DAS occurred in February 2002 with the release of the 1.50 specification. This release added several extensions to DAS to provide more robust exception handling and capabilities testing, but was backward compatible with earlier versions of the protocol. No major changes to the protocol have occurred since that time. The biodas web site (www.biodas.org) provides a central location for information on DAS and DAS implementations, and there is also an active DAS mailing list.
DAS has been widely adopted as mechanism to for large genome databases to provide automated access to their data. For example, DAS servers are available at the UCSC and Ensembl projects to serve human and mouse genome annotation data, at The Institute for Genome Research to publish annotations on rice, maize and other cereals, at Flybase to provide annotations on D. melanogaster, at RatDB to serve maps of R. rattus, and at WormBase to serve annotations on the C. elegans genome. DAS is also used internally within some of these projects. For example, DAS is used extensively within the Ensembl project to integrate annotations from loosely-linked data sources.
Several open source DAS reference and annotation servers have been released, including a lightweight server designed for annotation groups on a tight informatics budget (LDAS; http://www.biodas.org/servers/LDAS.html), and a more substantial server named Dazzle (http://www.biojava.org/dazzle/).
Any application that accesses data on a DAS server via the DAS protocol can be considered a DAS client, but the most popular DAS clients have been genome viewers that an be classified broadly into two types. First are server-side clients that access DAS servers to generate web-based annotation displays, usually by sending image maps to a web browser. Ensembl’s ContigView web pages are an example of this. A similar architecture is used by WormBase for the GBrowse and DasView genome browsers, and by TIGR for its genome displays. The other type of genome viewers utilizing DAS are standalone desktop applications that access DAS servers, and there are several such open source applications available. Two of note are OmniView (http://www.omnigene.org), a standalone Java-based genome browser written by Brian Gilman’s group of the Whitehead Institute, and Apollo, a standalone Java-based genome browser and editor tool (http://www.fruitfly.org/annot/apollo/). In the commercial realm, the Informax Corp. will soon release a version of its Vector NTI package that includes DAS client support (Steve Lincoln, personal communication). Other companies make extensive internal use of DAS. For instance Affymetrix Inc. has developed a genome visualization tool called GenoViz for internal use, which uses DAS to access a number of public DAS servers as well as private DAS servers inside of Affymetrix (see Figure 2.
[image: image1]
Figure 2: GenoViz, an Affymetrix genome visualization tool, displaying a region of human chromosome 21. In this screenshot DAS has been used to load mRNA and Genscan annotation tracks from the UCSC DAS server, which can be visually compared to RefSeq and Ensembl gene annotations loaded from an Affymetrix server. Also shown are graphs of transcriptional activity along this region of the genome, derived from the Affymetrix transcriptome project

Over the last two years, as DAS has been growing in popularity and being stress-tested by the many groups using it, we have learned more about what contributes to its success, and what areas need improvement.

We believe a number of general design principles have been key to the success of DAS. First is that DAS uses standard and well understood internet technologies, primarily HTTP and XML. Second is that DAS is a simple specification on top of these standard technologies, making it relatively easy to implement. Third, that DAS completely decouples client and server implementations, enabling any client and any server that follow the specification to talk to one another regardless of how they were implemented. Fourth, that it joins a specification of a standard XML data format together with a standard query mechanism for retrieving data in that format. And fifth, that anyone can provide their own annotations that refer to “authoritative” data without requiring further coordination with the authoritative source. DAS provides for this fifth principle by allowing third-party sequence annotation via a DAS annotation server that points to an authoritative DAS reference server to identify the sequences being annotated.

Despite its successes, the original DAS protocol, which we will now call DAS/1, has a number of deficiencies, and these are discussed often on the DAS mailing list. One of the most prominent issues is that there is no specification for how DAS clients can discover what DAS servers are available and where they are located. Also, the feature format currently used by DAS has a number of weaknesses, including problems with feature identifiers, weak typing, a lack of extensibility, and an inability to fully represent feature hierarchies. Furthermore, the current DAS interface to query servers for annotations is rudimentary, only allowing for querying by a combination of annotation location, type or id. There is also currently no specification for a standard way of writing annotations to DAS servers.

Based on feedback regarding these deficiencies, it became clear that a major revision to the DAS protocol was in order. During 2002, we opened a section of the www.biodas.org website for comments from the community in the form of submitted Requests for Comment (RFCs) for a future DAS/2 protocol. During this time we received over a dozen RFCs expressing a wide variety of viewpoints and suggestions, as well a significant discussion of these RFCs on the mailing list. In addition, there have been a number of experimental implementations of possible DAS/2 architectures. The specific aims and experimental plan outlined in this proposal, while not matching any of the RFCs precisely, represents our best sense of what the community needs in DAS/2 for it to evolve towards the ideal of a fully collaborative distributed sequence annotation system.
Research Design and Methods
Specific Aim 1: Develop and publish DAS2 Specification

The first and most crucial aim of this grant is to develop and publish a specification for the DAS2 protocol. It is critical that development of this spec be done as a collaboration between the participants in this grant and the DAS developer and user communities as a whole. As mentioned above there have been numerous suggestions on the DAS mailing list (das@biodas.org) for improvements to the protocol. We intend to incorporate many of these suggestions into the new specification, and in fact most of the ideas explored below originated in discussions on the list. It is important to note that this will be an iterative process. Once we arrive at an initial DAS2 spec, this will be posted to the DAS mailing list for review and comments. We anticipate that we will revise the specification based on feedback from the DAS developer and user communities, and that this may take multiple cycles.

Another important concern in designing a DAS2 specification is to maintain as much backward compatibility with the existing DAS spec as possible. As mentioned above, DAS is already in use at many sites, and we believe that for a new DAS spec to be successful it must cause minimal disturbance to both DAS servers and DAS clients that do not wish to upgrade to a new spec. Thus DAS2 servers should continue to support the DAS1.x specification in a backwardly compatible manner.
Two aspects of improving DAS have received the most discussion on the DAS mailing list:
1. How and to what extent should DAS evolve to become a full-fledged “web service”?
2. How can the XML format DAS uses for sequence features be improved?
Web Services and DAS2

There are two primary motivations for developing DAS2 as a web service, first to allow automated discovery of DAS servers by DAS clients, and second to allow better integration of DAS2 with other existing and future web-based bioinformatics technologies. Before discussing further the benefits of evolving DAS into a web service, it is worth noting that the term “web services” is used by different people to mean a variety of different things. This confusion is as much a result of marketing hype over the last few years as it is the product of a plethora of incompatible implementations and proofs of principle that are labeled “web services”. The best formal definition is still in its infancy. The public working draft of the W3C’s Web Services Architecture specification was released in November 2002 (http://www.w3.org/TR/2002/WD-ws-arch-20021114/) attempts to alleviate this confusion by offering a definition:

 “A Web service is a software system identified by a URI, whose public interfaces and bindings are defined and described using XML. Its definition can be discovered by other software systems. These systems may then interact with the Web service in a manner prescribed by its definition, using XML based messages conveyed by internet protocols.”
We will take this as the best current definition of web services. Breaking down this definition, the current DAS specification meets some of the requirement for a web service:

1. web service is a software system identified by a URI

2. web service uses XML-based messages

3. web service messages are conveyed by internet protocols

However, the current DAS spec does not include other requirements for a web service :

4. web service public interfaces are defined and described using XML

5. web service interfaces and bindings can be discovered by other software systems

6. other systems may interact with the web service in a manner prescribed by its interfaces and bindings

A.
B.
C.
One implication of adopting standard web services technologies as defined above is that DAS XML will be more formally defined. The current DAS spec defines DAS XML using data type definitions (DTDs). DTDs are the original method of specifying constraints on an XML format, for example which elements (tags) are allowed, what attributes an element has, what nested elements an element can contain, etc. This allows automated validation, ensuring that an XML document that refers to a given DTD follows the constraints of that DTD. However there are now several more powerful technologies for specifying XML formats. XML Schema (XSD) is an example, and the one most closely associated with web services. XSD includes more primitive data types than DTDs, including numeric formats, so for example one can specify that a that an XML element attribute represents a floating point number between 0 and 1.0. XSD also includes the notion of element inheritance, which allows a more direct mapping between object-oriented programming technologies and XML. In addition to supporting more sophisticated document validation, XSD and similar technologies have enabled automatic code generation. There are now a number of freely available toolkits that can automatically build an XML schema based on a set of object-orient APIs (application programming interfaces), or can take an set of APIs and generate an XML schema. And as part of the conversion these toolkits also generate code in the API’s programming language to build objects from XML and to generate XML from objects.

The most important benefit of adapting a web services approach compared to the current version of DAS is that it provides a standardized way for DAS clients to dynamically discover DAS servers. Currently a DAS client must already know the location (URL) of all the DAS servers it wishes to retrieve data from. In contrast, web services allow dynamic discovery typically by registering service providers with a service registry. As part of the registration process a service provider describes what service it provides and how to access that service. Clients can then query the service registry to find servers that provide the services the client is interested in, and use the description provided by the registry to interact with the service. The most popular way of defining web services is currently the Web Services Description Language (WSDL). This is an XML-based language that describes where a web service resides, what input it expects, what it does with that input, and what output it returns. It uses XML Schema for defining XML inputs and outputs of web services. Like XML Schema, there are a number of available tools for transforming programming APIs to WSDL and vice versa.

Although both XML Schema and WSDL are XML formats, neither are particularly simple or readable. Because they are meant to be very general, describing any particular XML format or web service can become very verbose and complex. For this reason, as mentioned above they are often auto-generated from programming APIs. Another alternative that we find attractive is to generate schemas and WSDL using another technology, the Unified Modeling Language (see for example http://www.uml.org). UML is intended to make it easy for humans to model things in an object-oriented way. UML is a visual language, and although it can be transformed into plain text, it is best used as a graphical notation tool to construct and view models of objects and their relationships to other objects. Tools exist to take UML and generate XML Schemas, WSDL, and object-oriented APIs in one’s chosen language (see for example http://www.xml.com/pub/a/2002/08/07/wxs_uml.html?page=1). UML is particularly appealing for further DAS development because we are seeking input and consensus from the large community of DAS developers. UML will allow us to exchange diagrammatic descriptions of proposed changes which are much easier to comprehend than XML schemas or WSDL descriptions, but are at the same time still formal specifications from which schemas and WSDL can be machine-generated.
Beyond the use of XML Schema and WSDL, which have a relatively broad consensus, Web service developers are currently split into two broad camps: SOAP (Simple Object Access Protocol) and REST (REprensentational State Transfer). SOAP is essentially a remote procedure call (RPC) API for exchanging objects across the network and making remote method calls, usually using a SOAP-specific XML format (SOAP-RPC) to define SOAP method calls on top of the standard HTTP internet protocol. SOAP toolkits provide many tools for hiding the details of the transaction behind what appear to the application developer to be local objects and method calls. REST is a looser concept that allows for both object-oriented and data stream-oriented interfaces to services, and advocates that using existing HTTP-based mechanisms for web services when possible, and considers SOAP-RPC on top of HTTP as adding unnecessary complexity. WSDL web services descriptions have both a SOAP and an HTTP binding, and therefore can be used in combination with either SOAP-RPC or an HTTP-based REST architecture. The current DAS specification does not use SOAP, and adheres to many but not all of the principles of a REST architecture.
Over the past year several DAS community developers (Thomas Down, Brian King, Brian Gilman) have experimented with SOAP-based reworkings of the DAS protocol. Although the experiments have been at least partially successful, it is our opinion that none of them has made a convincing case for an RPC-style API to DAS. Furthermore, there are a number of disadvantages to using SOAP. Given that WSDL can work on top of REST-style HTTP methods, it would seem that introducing another layer on top of HTTP via SOAP adds additional complexity without any additional benefits regarding our main goal for web services, which is standardized DAS server registration and discovery. Furthermore, the way DAS currently sends queries to DAS servers is via HTTP GET calls, which has worked well largely due to its simplicity, and using SOAP-RPC would require revising this as it does not allow HTTP GET calls. Also, SOAP usually requires that the entire SOAP XML message be parsed into an object structure before anything useful can be done with it. This has a significant negative impact on both performance and memory usage for certain calls in DAS, most importantly annotation requests, whereas REST-style architectures more suitable to processing data streams on the fly do not have this issue. With effort, some SOAP toolkits can be modified to provide event-based processing of the incoming data stream, but this involves contortions that negate the advantages of using a standardized technology in the first place.
SOAP and REST are not completely incompatible. Very recently in response to criticisms from REST proponents, the W3C’s draft SOAP 1.2 specification has been modified to allow for SOAP to be used in a more RESTful style (which has been termed “Web Methods”) instead of SOAP-RPC, for example to allow simple HTTP GET calls to be considered SOAP messages. This would address many of our concerns about SOAP. Based on the above considerations, in the DAS2 specification we intend to follow REST principles that allow us to preserve the simplicity of the current DAS query-response architecture that utilizes only HTTP methods and XML, while reserving the option to provide a SOAP compatibility layer should the developer community request it.
In order to dynamically discover a DAS web service, it will be necessary to have a service registry that DAS services can register with. Unfortunately there is even less of a consensus on service registry architectures than there is for web services themselves. The closest thing to a de facto standard, UDDI, is a large and complex system that has been promulgated by several industry heavyweights, but is neither distributed under open source terms, nor is approved by the W3C. In the absence of an open source standard, we are attracted by the lightweight bioMOBY service registry (http://www.biomoby.org), a biology-oriented service registry currently being developed by Stein in collaboration with Mark Wilkinson of the Canadian Cancer Research Institute and Damian Gessler of the National Center for Genome Research. We intend to use bioMOBY as a service registry, and potentially others. See discussion under Specific Aim 7 for more details on bioMOBY.

Combining the above web services discussion, we plan to:

1. Specify DAS2 data models with UML class and object diagrams

2. Specify typical DAS2 client and DAS2 server interactions with UML sequence diagrams

3. Generate DAS2 XML schema from UML class diagrams

4. Generate DAS2 WSDL from UML, using a WSDL binding to HTTP, and also possibly a binding to SOAP
5. Make sure DAS2 servers can use DAS2 WSDL to register with an appropriate web services registry, and that DAS2 clients can discover DAS2 servers via the registry
 6. Publish the DAS2 UML modeling, DAS2 XML Schemas, DAS2 WSDL, and mechanisms for DAS2 server registration and discovery as part of the DAS2 specification
Improving Feature Representation

Given that DAS2 is provided as a web service, the next issue to address is whether the current XML formats for responses from DAS servers to DAS clients is sufficient, particularly the format for representing sequence annotations (also often called sequence features – for example, transcripts and exons). The DAS format for representing features is DASGFF XML, and is based on a mapping of the popular GFF flat file sequence annotation format (http://www.sanger.ac.uk/Software/formats/GFF/) to XML. Each field in a GFF file maps roughly to an element in the DASGFF XML. There have been numerous postings on the DAS mailing list with suggestions for improvements to DASGFF, ranging from minor modifications to complete replacements.

Feature IDs

DAS1 requires that all features (and sequences) have an identifier and that this identifier be unique, but only under the scope of the DAS data source. Thus two DAS data sources (perhaps on the same DAS server) could still use identical feature ids to refer to different features. This makes it difficult for DAS clients to uniquely identify features when integrating data from multiple DAS servers, and each client must invent its own system for uniquifying IDs (combining the DAS data source URL with the feature, for instance). Perhaps more significantly, it means that there is no generic way to refer to a DAS feature (or sequence for that matter) outside of the context of DAS itself – the feature ID alone is not sufficient. There is a linking mechanism in DAS1 that allows a DAS client to use a feature ID to query a DAS server for more information about it, but any system that wished to create a link to a DAS feature would have to know the URL for the DAS data source, and the specific details of the DAS link query mechanism. There is also no specification of what format the data is returned as – it could be HTML, XML, or any other MIME format. We propose to address this issue in the DAS2 specification by requiring that DAS feature identifiers be standard internet Uniform Resource Identifier (URIs), which guarantees uniqueness within the scope of the entire Web. Resolving this URI into a location-dependent URL and accessing that URL should return the XML for that feature element.
Providing URIs that point to DAS XML features opens the door to applying a number of web technologies that are “generic” in the sense that they can be applied to any web resource (in this case, sequence features) that has a URIs and is formatted as XML.
A good summary of this advantages of this approach are given by Paul Prescod (http://www.prescod.net/rest/rpc_for_get.html):
You can give that URI address to anyone, anywhere and they can reuse it. In particular this means that we can compose applications that were not thought of in advance. Google is an example of an application that was composed "after the fact" out of URIs. Yahoo is another…There are a raft of deployed W3C recommendations that work with information related through URIs. Many of these are XML-related specifications that work as well in API-like applications as in user interface-based applications. These include: XPath, XPointer, XSLT, XLink, RDF, XInclude, XQuery, xml-stylesheet. Information published through HTTP URIs can be combined through XInclude, queried and sorted through XQuery and XSLT, visually rendered with xml-stylesheet, related through RDF, linked through XLink, pointed into through XPointer.

RDF (Resource Description Format) is of particular interest, because a number of bioinformatics projects are working on using RDF and technologies built on top of it such as the Web Ontology Language (OWL, formerly called DAML+OIL) to describe biological ontologies 3. RDF leverages off of URI linking and XML to provide generic ways to describe relationships between data represented by those URIs. For example, with use of URIs in DAS2 to specify feature ids, it is easy to formally say in RDF that “transcript X is over-expressed in human liver” by making a statement in RDF relating the transcript’s DAS feature URI, another URI pointing to an anatomy ontology that formally indicates what is meant by “human liver”, and a third URI that points to a term for “overexpressed in” in an ontology describing biological relationships. More refined statements like “we believe transcript X is over-expressed in human liver because this specified set of micro-array experiments showed an average 2.5 fold expression increase” are currently more difficult, but should become more straightforward over the next few years. Looking further ahead, one intent of RDF is to be a building block for the Semantic Web 4, which is intended to eventually allow logical reasoning over distributed web resources, and there are preliminary bioinformatics projects working on using RDF in this manner. Such projects fall well outside the current scope of DAS. However, with a few relatively simple changes in the DAS2 specification such as specifying URIs for DAS features, we feel DAS will be in a good position to integrate with such systems as they become available.

Based on the discussion above, the main task in modifying how DAS handles ids is to choose a system for globally identifying sequence annotations Two recent efforts to standardize on unique ids for referencing biological data are relevant to our work on specifying unique DAS2 identifiers as URIs, as they take similar approaches. One is the LSID proposal from the I3C group (see http://www.ic3.org), which proposes a standard format for specifying unique URIs for biologically significant data items. The second is bioMOBY 5, which specifies a “MOBY Triple”, which is a triplet of terms specified in XML that uniquely identifies biologically significant items. Although in current practice the MOBY triple is not a URI, it is fairly straightforward to convert these triples into URIs. There are some current issues with whether all the information in an MOBY triple transformed into a URI can be represented in the I3Cs particular URI format, and vice versa, but we hope that these two groups will converge in a common concept of abstract unique identifiers that can be automatically converted between URI format and MOBY triple format. Assuming this convergence, we will likely adapt the same converged URI format for use as identifiers of DAS2 data, along with a formally specified way of converting these URIs to location-dependent URLs.

Reducing Feature Verbosity

DASGFF specifies a number of required elements such as feature start, feature end, strand, etc. This leads to a very verbose format. This is a common problem with XML formats, especially ones that are derived from what are basically tables. The column names of the table end up getting repeated for each element, which can more than double the size of the XML. The <ORIENTATION> element in DASGFF is an extreme case of this. It is a required element, but the content of the element must be either “+”, “-“, or “0”. So a single character field, which could be represented by a single byte in an optimized format, is inflated by a factor of 28x (one character for the content, and 27 characters for the element tags: <ORIENTATION>+</ORIENTATION>.
Having such a bulky format has three unfortunate consequences for DAS performance. First, there is a performance penalty on the DAS server because more processing time is needed (and probably more memory) to generate the XML. Second, it takes longer to transmit this XML over the network, especially if the DAS server or DAS client have a slow network connection. Third, there is a performance penalty on the DAS client because more time is needed to parse the XML into appropriate data structures. Standard techniques for compressing data over HTTP can significantly help speed up XML transmission, but at a cost of additional processing on the server to compress the data and on the client to uncompress the data. This is an issue for high-speed networks, such as the Internet2 backbone, where the compression processing overhead can easily outweigh the network transmission time savings. We intend to address these performance issues by reconsidering the DAS feature format with regard to the naming of elements, which elements are absolutely necessary for each feature, and which are optional or redundant for some features.

One valid criticism of the previous proposal to use full URIs to specify DAS identifiers is that it conflicts with this desire to reduce the verbosity of the XML that DAS has to generate, transmit, and parse. URIs do tend to become large text strings. However there are a number of standard mechanisms available to support “lazy expansion” of short ids to full identifiers in an XML resource, and we will explore these to determine if they are appropriate.

Feature Hierarchies

Adhering to a GFF-like format also forces DASGFF to be fairly shallow. That is to say that its XML syntax is very flat. For example, features are grouped based on a “group” element whose id attribute is identical amongst the features that belong in the same group. A data provider can thereby group all the exons for a transcript together, but the hierarchical relationship between a transcript and its component exons is easily lost unless the client makes assumptions about the semantic meaning of “transcript” and “exon” data types (and “hit” and “HSP”, etc.) Also this grouping mechanism only allows features to be grouped at one level, so there is no support for a full hierarchy of features (for example, a gene which has multiple transcripts which in turn each have multiple exons). Although it lends DAS simplicity, this grouping mechanism comes at the cost of any richer feature structure. We propose to address these problems by introducing a hierarchical feature format in DAS2 as a replacement for DASGFF.
Several existing or proposed XML formats have been suggested on the DAS mailing list as replacements for the current DASGFF format, These include XFF, AGAVE , GAME, DASBED, and BSML.

An important consideration is that while we want to introduce hierarchical features for the reasons noted above, we must take care to preserve as much of the simplicity of the DASGFF feature representation as possible. Of the formats proposed above, XFF appears to come closest to meeting these two goals. All of the other formats listed above either don’t allow for arbitrarily nested feature hierarchies, or have a richer representation of features than DASGFF, but at the expense of simplicity and generality. We therefore intend to develop the DAS2 feature XML by taking DASGFF and XFF as the starting points. We also intend to incorporate ideas from the other proposed formats, to the extent that this can be done without introducing additional complexity.
It is important to note that using a simpler format does not automatically preclude more complex formats, for one of the remarkable benefits of XML is that richer representations can be layered on top of simpler ones. This is because any XML format can be extended by creating a new XML format that references back to the former one, and XML Schema makes this even more powerful by introducing the object-oriented notion of inheritance to element types. XML parsers can optionally ignore the content of elements and attributes that they don’t understand.
As a concrete example, consider layering support for feature evidence on top of a simple DAS2 hierarchical feature format (DASXFF). Both GAME and AGAVE have support for the notion that a sequence feature can refer to other sequence features as supporting evidence. One could layer this type of data on top of a DASXFF that lacks evidence support by creating a new schema, DASXFF+, that references the DASXFF schema and then adds additional rules that allow a feature element to contain an evidence element, and specify how the structure of the evidence element should be constrained. A standard DAS2 client would just ignore the evidence element, whereas an extended DAS2 client that understood the evidence elements of DASXFF+ could convert the evidence XML into an appropriate data structure for further use.
Also, the HTTP protocol has built-in support for “content negotiation”, which allows a client to discover what data formats an HTTP server can return, and to request that the server return data in a specific format if the server supports that format. We intend to investigate the possibility of utilizing this capability to allow a DAS client to discover whether a DAS server supports returning richer data formats, and to request these formats. A DAS server would still be required to server data in the simple DAS XML format, but this would allow a standardized way to provide alternative data formats

Moving to a hierarchical feature format in DAS2 can also provide further performance benefits. Some properties of features could be specified as applying to all children of a feature, unless those properties are explicitly changed in the child. For example, DAS specifies a required “method” element for each feature, but in DAS2 this could specified as being required only for top-level features, so for a feature indicating a Genscan transcript prediction the method would be “Genscan”, but the child features indicating the individual exons within the Genscan transcript would not have method elements: their method is inferred from the parent feature’s method. A variation on this is to have elements that only apply to a set of child features (but not the parent). For example, each feature element in DAS is required to have a “type” element which indicates the type of annotation. Continuing the Genscan example, the type for transcript prediction would be “mRNA”, the type for all the exon child features of the transcript would be “exon”. This could be encapsulated using the notion of feature sets in XFF, so that a type element would apply to all features in a feature set (in this case, exons would be a feature set within the transcript).

Feature References

Introducing nested hierarchies of features in DAS2 raises the issue of how to deal with cases such as alternative splicing, which can be considered as two or more transcripts sharing some (but not all) of their constitutive exons. In DAS1, this can be represented by each “shared” exon feature having multiple group elements, one for each transcript. Effectively both the transcript and the exons comprising that transcript point to a common group. In hierarchical feature XML the grouping elements can be removed for efficiency, since the grouping is achieved by nesting features within features, but this implies that a feature has only one parent feature. Therefore to allow for shared features, we intend to allow for features to indicate children not only by nesting but also by reference to the child feature’s ID. This allows shared features to be defined outside of a feature hierarchy but pointed to by multiple parents within the hierarchy. References and nesting could be mixed as desired, so for example a gene feature might contain three alternatively spliced transcripts, and each of these transcripts could contain exons unique to the splice variant while referencing exons that are shared.
Although adding feature references to DAS is initially motivated by the desire to allow references within the same XML document returned by a DAS server, combining this technique with the concept of using URIs to uniquely identify features as discussed above also opens up intriguing possibilities for references between XML resources, whether they are served from the same DAS2 server or not. So a DAS2 annotation server could serve up annotations that are composed of annotations from other DAS2 servers. As a concrete example, consider a small computational analysis group that is using large amounts of public genotyping data (from an authoritative source that provides a DAS2 server) to build their own map of haplotype blocks. The haplotype blocks are essentially genomic features that are comprised of SNP features. The only way to serve this data in DAS1 would be to provide a DAS server that has both the new haplotype block features and a copy of the SNP features. For DAS2, this could be accomplished instead by the group providing a DAS2 server that only serves haplotype block features, and these features have child features that are references to features from the authoritative DAS server that serves up the public SNP data.
There are two major advantages to this approach. First, it spares the group doing haplotype annotation from the overhead of maintaining the much larger DAS server that would be required to keep redundant annotations of SNPs. And second, people who use DAS clients to access the haplotype annotations can be more confident in the underlying SNP data because they know it comes from a trusted authority on SNP data. This brings us much closer to an ideal collaborative sequence annotation system, where a small annotation group can serve annotations via a DAS server, and in addition to referring to a reference sequence maintained elsewhere when creating their annotations (which is what DAS1 allows), can also reference annotations from other groups.

Feature Ontologies

Another aspect of DAS feature XML that needs improvement is the classification of features. Currently this is a three-attribute classification, by “method”, “type”, and “category”. While the distinction between these attributes is clarified in the current DAS specification, there is provision for only one level of type grouping (categories are groups of types), and no grouping mechanism provided for methods. Furthermore, there is no way to specify the relationship of methods between different DAS servers, so for instance one DAS server may specify a method as “BLAST”, one as “BLAST similarity”, and there is no programmatic way to determine if these are the same or different methods. And although the DAS specification defines the possible feature types and categories, there is no formal definition in the DAS DTD that enforces these constraints. Also it would be very desirable if these attributes could be related in an automated way to resources outside of DAS.
An attractive resolution to these problems is to replace the current DAS classification of method, type, and category with an ontology of sequence feature types. An ontology is simply a description of the relations between different terms. For example, one can specify that a “primary transcript” contains “exons”, or that a “LINE” is a type of “retrotransposon”. The Gene Ontology (GO) is a very successful example of the use of standardized, structured ontologies to curate biological data results, and the increase in knowledge. GO allows people to curate genes by reference to terms in the ontology. Because it is formally specified, computational biologists can develop applications to then infer knowledge that isn’t explicitly stated in the curations. For example, that gene X and gene Y are involved in the same process even though they were curated with different terms (because those terms share a common ancestor process term). The GO group is now developing a Sequence Ontology (SO) to specify types of sequences and sequence annotations. Therefore we intend to adopt SO as a replacement for the type and category elements of DAS features. Both of these can be replaced by a single type element that refers to an SO term. One can then determine the relationship of that type to any other type be exploring the sequence ontology. For example, a feature may be specified as type “LINE”, and examining the ontology it is clear that this feature is also of type “retrotransposon” , because LINE is itself a type of retrotransposon. There is a mapping of GO into an RDF ontology which allows GO terms to be referenced by URI, and a preliminary mapping also exists for SO. This will allow DAS2 to use URIs as identifiers to reference the Sequence Ontology terms used for sequence feature typing. We will likely use SO to specify typing for DAS sequences as well.
Using a standard sequence ontology does not preclude extending the ontology. One of the advantages of using RDF and OWL to specify ontologies is that there is a formal mechanism for anyone to extend an existing ontology, which gives rise to distributed ontologies. This ability to extend ontologies is built on the same URI linking concepts previously discussed regarding feature ids. Thus for example someone with detailed knowledge of some the biology of repetitive sequences, for instance, may be annotating repeat data and want a much finer classification of repeat types than is specified in the reference ontology. They can define an extension of the existing ontology via RDF that refers to the existing ontology and specifies the extension (such as LINE-variantX isa type of LINE), then serve up DAS sequence features that refer to this extended ontology rather than the reference ontology. But because the referenced ontology formally extends the standard ontology, a DAS client could still be aware that LINE-variantX is a type of repeat, if for example it wants to display all repeats using the same color. Many software tools are now available to make such ontology extensions easy.

In addition to improving feature classification, there have been a number of proposals to add a general mechanism to DAS to attach arbitrary attributes to sequences and sequence features, and also to allow for describing arbitrary relationships between features and/or sequences. Both of these could be achieved by using an RDF XML syntax that references the URIs of the features. Using RDF, attributes and relationships would essentially be the same thing, since a relationship between two features is just a special case of an attribute that is shared by both features. This would also allow both attributes and relationships to be specified by completely arbitrary text, or by a formal ontology if desired. SO, GO, MGED (which defines terms for describing experimental conditions) and other ontologies may be suitable for this use.

We also intend to explore methods to easily query over DAS2 servers to retrieve annotations based on their attributes and relationships, and possibly additions to the DAS2 spec so that DAS2 servers can optionally support these constrained queries. The best mechanism to support such queries is unclear. For example, general query technologies utilizing RDF may prove too complex to meet our criteria of keeping DAS2 simple. Based on further investigation, we may adopt a more specialized but simpler query protocol.
Support for dense quantitative data

There are a number of types of sequence annotation that do not fall neatly into the category of hierarchical features, but are better represented as graphs of data points where one axis is position along a sequence and the other is some type of quantitative score.
Examples of this kind of data include
coding potential scores, s
ummaries of EST coverage,
sequence quality scores, and
measures of transcriptional activity at many points across large genomic regions

At Affymetrix this kind of data is routinely viewed in the GenoViz tool, layered alongside features retrieved from DAS servers. Currently DAS supports attaching a score to each feature, so in theory this could be used to emulate data graphs by having a zero-length scored feature for each data point, but in practice this is extremely inefficient. We propose therefore to specify a format more suitable to represent this dense quantitative data. The most efficient way to do this is likely to be placing this data entirely outside of the DAS XML, and instead providing for links from DASXFF out to URLs that provide the quantitative data in a denser format. Referencing this data via URLs fits nicely with our proposals above for providing URIs for all sequence features and allowing feature references via those URIs. This would also integrate well with the HTTP “content negotiation” capabilities we mentioned previously, which would allow a standardized way of retrieving dense quantitative data from a DAS server in an optimized format without requiring that the format be part of the core DAS2 specification.
DAS Feature Submissions

Another major enhancement we intend to add to the DAS specification is “writeback”, the ability for DAS clients to submit annotation data to DAS servers. Currently there is no specification for how DAS servers are populated with data. In practice this is handled in many different ways for different DAS servers. Some DAS servers are essentially a layer on top of an existing relational database, and assume that any modifications to the data available to DAS happen via SQL calls the database. Some (like LDAS) are middleware on top of a relational database designed specifically for DAS, and make provisions for data to be loaded form flat files that are placed in special directories. Specifying a way for DAS clients to submit annotation data to DAS servers would certainly not preclude these other ways of populating a DAS server, but would offer a standard that any DAS client could use.
This would allow DAS to bring annotations full circle. Annotations could be computationally computed, submitted to a DAS server, accessed from the DAS server by a GUI DAS client, hand curated, then submitted back all via DAS protocols. DAS writeback would be considered optional, with a mechanism available for clients to determine if a DAS server supports data submission, and what types of data the DAS server will accept. This capability has already been prototyped in the Affymetrix’ GenoViz tool, which allows curators to build a curated sequence annotation and submit it back to a DAS server for incorporation as a new DAS sequence annotation.

Adding writeback capabilities to DAS2 will involve some additional concerns, however. There needs to be a security mechanism for deciding if a given DAS2 client has proper authorization to add, modify, or delete specific annotations from a particular DAS server. There also need to be some form of transactional integrity, so that there is no possibility of partial failure of a DAS writeback action. Furthermore, it will be important to have some sort of locking mechanism, so two DAS clients cannot be modifying the same feature at the same time. The HTTP protocol itself provides an infrastructure for authentication, but the authentication will be at the level of entire data sources rather than individual data objects. The DAV (Distributed Authoring and Versioning system) provides the framework for more granular authentication, and also provides mechanisms for object locking. We will explore the DAV architecture as one possible implementation scheme for DAS2 writeback.
In combination with the use of remote feature references and a GUI client that supports interactive curation, DAS writeback would allow the easy development of local DAS servers supporting small-scale curation based on large-scale computational results residing on remote DAS servers. In further combination with standard ways of registering and discovering DAS servers as discussed above, this will bring DAS2 much closer to the ideal of a fully collaborative distributed sequence annotation system.

Summary of DAS specification work

As should be clear from the above discussion, arriving at a DAS2 specification involves not just assessing what the most immediate needs for DAS users and developers are, but also looking forward to how distributed sequence annotation systems are likely to be used several years down the line (for example, as components in a distributed biological reasoning system). The trick is to balance current needs and future possible uses, and then determine the simplest modifications to the current DAS specification that allow for both current improvement and future evolution.
Specific Aim 2: Provide a freely available open-source implementation of a DAS2 validation suite.

One hard lesson learned from DAS1 is the need for some mechanism to validate that a DAS server is compliant with the DAS specification. The DAS1 specification was originally published without providing a validation tool, and partially as a result of this many DAS server implementations did not entirely conform with the actual specification. This led to situations where DAS clients and DAS servers built by different groups had problems communicating with each other, and the reasons for these incompatibilities were sometimes difficult to pinpoint.

We therefore propose to build a suite of DAS validation tools, which will be made available at the same time that the DAS2 specification is published. A server validation tool will be provided as a standalone application which takes as input a URL for a DAS2 server, and outputs a report on how well the server complies with the DAS2 specification, and if there are problems, which parts of the specification the server conflicts with. This facility will also be available as a web site where one can enter the DAS server’s URL and get back the same type of report as an HTML document. Part of this validation suite will also be a reference dataset of sequences and annotations that can be loaded into a DAS server. This would allow the server validation tool to do a deeper validation of the server, for example making sure that the coordinates the server reports for an annotation are the same as in the reference dataset, and that the feature identifiers are returned correctly.

This work will be the responsibility of Andrew Dalke at Dalke Scientific. Andrew has worked extensively on developing systems that utilize HTTP and XML for web-based bioinformatics applications, including systems that utilize DAS. He has already implemented an invaluable validation tool for the DAS 1.5 specification, and is thus well suited to carry out the validation work for DAS2.
Specific Aim 3: Provide a freely available open-source implementation of a DAS2 server
We will use the LDAS server as the basis for a DAS2 server. This will be used during the development of the DAS2 protocol for the purposes of prototyping and evaluating various aspects of the protocol, and after stabilization of the protocol as a production-quality server. The server will also act as a reference implementation of DAS2.
LDAS is written in Perl, and runs on top of Bioperl middleware, and interacts with the underlying datastore via a series of data source adapters. Adapters exist for various MySQL, Oracle, and PostgreSQL databases, including the ones used by FlyBase, WormBase, and the Fugu sequencing project database in Singapore. An adapter for Ensembl is in development and is expected to be ready for production by the spring of 2003. Hence, LDAS is well-positioned to be immediately useful to a number of groups.

We will develop LDAS in two phases. In the first phase we will expand its data processing model to allow for writeback to the data store. This is the most fundamental change, because currently LDAS assumes a read-only database and therefore uses in-memory caching at various points to increase its performance, and we will need to add support for invalidating cached objects during DAS writeback operations. Another issue is authentication, for which we will need to develop an API between the application and the middleware layers that allows the authentication information provided by the DAS2 protocol to be passed through to the underlying data store. A last change to accommodate writeback will be to introduce the concept of time-limited object-level locking, to support that necessary aspect of DAS2 writeback. Because locking is highly schema and DBMS-dependent, we are likely to make the middleware or application layers responsible for this operation rather than to map the operation onto the DBMS .

In the second phase, we will modify LDAS to accept DAS2 requests and to produce DAS2 responses, including the improved grouping and ID constructs described in specific aim 1. We will take advantage of the capabilities negotiation described in specific aim 1 so as to recognize older DAS1 clients and to continue to support them.

This work will be the responsibility of Lincoln Stein and his staff. As primary author of LDAS, and a member of the Bioperl core development team, he is well suited for this task.

Specific Aim 4: Provide a freely available open-source implementation of a DAS2 client
The changes to the DAS specification proposed above introduce a number of new capabilities, and we intend to provide the community with a freely available open-source implementation of a DAS2 visualization client that makes full use of these new capabilities. There are a number of DAS client sequence visualization applications currently available, although none make full use of the full DAS 1.5 specification. We therefore intend to start with an existing DAS client and extend it to build our DAS2 client. Like the DAS2 server described above, we will use this DAS2 client during development of the DAS2 protocol for the purposes of prototyping and evaluating various aspects of the protocol. We expect this client will serve as a genome annotation visualization and curational front end for many sites that desire an interactive DAS2 client.
 We have considered as a starting point three applications mentioned in prior sections of this grant: OmniView, Apollo, and GenoViz. We reviewed these in particular with a regard for the amount of work it would require to add DAS2 capabilities, and in particular to result in a client with rich interactive curational support utilizing DAS2 writeback and DAS2 ontology support.
Of the three, OmniView provides the richest support for the current DAS specification. However, the user interface has been designed to mimic the static images of annotations generated by the Ensembl web site, and it would likely be labor-intensive to develop a rich curational interface on top for this reason. Also, OmniView was largely designed to integrate with OmniGene, a larger software system, and hence has a number of software dependencies with other parts of OmniGene, which could complicate development of OmniView as a standalone viewer. For these reasons we do not intend to use OmniView for development of the proposed DAS2 client.
Apollo is an attractive choice to base development on, as it already provides a rich interface to visualize genomic annotation and to support interactive curation of those annotations. It is in use by a number of genome curation groups, and provides extensive user documentation. However, only recently has support for accessing annotations via DAS been added, and this support is quite limited. Furthermore, there are performance issues with handling large amounts of data, both in terms of time required to load annotations and memory usage. These appear to be at least in part deeply rooted in the data models Apollo uses to represent sequences, features, curations, etc.
GenoViz is another attractive choice as a starting point for development of a DAS2 client. GenoViz is an application developed at Affymetrix to visualize sequence annotations in ways quite similar to Apollo. However, GenoViz was designed from the beginning with the intent to handle large amounts of data – it routinely loads hundreds of thousands of sequence annotations at once, and additionally handles the type of dense quantitative graphs described in Specific Aim 1, routinely visualizing millions of such data points, while still maintaining real-time responsiveness to user interactions. GenoViz supports loading data via a variety of mechanisms and formats, including accessing DAS servers. Furthermore, it supports writeback to a prototype DAS server, similar to the writeback mechanism we have proposed for DAS2. However, its curational interface is currently more limited than Apollo, and it lacks documentation. But the biggest issue with using GenoViz as a starting point for the proposed DAS2 client is that it is not currently open source.
Based on the above appraisal of Apollo and GenoViz, we propose to develop a DAS2 client by integrating these two applications and building on top of the this integration, thereby leveraging the complementary strengths of both. Discussions are ongoing regarding making the GenoViz code open source – there is tentative agreement on open source in general, but the issue of what form of open source license is yet to be resolved. Therefore, assuming that Affymetrix agrees to an open source license that meets the requirements defined in Appendix A, we intend to integrate parts of Apollo and GenoViz to build a DAS2 client that fully utilizes the DAS2 specification to support dynamic discover of DAS2 servers, and visualizing and curating sequence annotations via the DAS2 specification. If for some reason GenoViz cannot be release under an appropriate open source license, we will use Apollo as the starting point for the DAS2 client. We anticipate making this decision well before the start of the grant period. We sincerely hope to use both GenoViz and Apollo in development of the DAS2 client, to take advantage of their complementary strengths.

The DAS2 client will be a standalone Java-based application. It will make use of DAS to access, visualize, and compare sequences and sequence annotations via DAS servers. In addition, it will take advantage of the new features of the proposed DAS2 specification. The client will provide a rich interactive interface for creating new annotations, and curating existing annotations, utilizing the DAS2 writeback facility for submitting new annotations to a DAS2 server. It will also utilize the new feature, ontology and query abilities of DAS2 to allow users to access sequences and annotations based on feature id or feature type classifications.

This work will be the responsibility of Gregg Helt and his staff. As the architect and primary developer of GenoViz and numerous other applications for visualizing and curating biological data, he is well suited for this task. He has also successfully collaborated with many of the Apollo developers previously. Suzanna Lewis, the project leader for Apollo, has expressed enthusiasm for this proposal to integrate aspects of both Apollo and GenoViz to build a DAS2 client (see letter of support from Suzanna Lewis).

Specific Aim 5: Provide access to Ensembl genome annotations via a DAS2 server

Ensembl is an ambitious project to annotate large genomes and provide public access to these annotations. In addition to currently providing a public DAS server for accessing Ensembl annotations, DAS is also used extensively behind the scenes at Ensembl project to integrate annotations from multiple loosely-linked data sources. For instance, many of the tracks displayed on the popular Ensembl ContigView web pages are derived from DAS databases that are maintained and operated independently of the main Ensembl gene build database. Furthermore, using this architecture researchers can add new DAS-based tracks to the Ensembl ContigView using their own, or others data, as well as upload small annotation data sets of their own to a “third party” DAS database maintained at the Sanger Center.

We propose to provide access to Ensembl genome annotations via a DAS2 server, and to take advantage of new capabilities the DAS2 spec provides. In particular, using the DAS2 writeback capabilities will allow anyone using a DAS2 client that implements writeback calls to a writable DAS2 server to submit their annotations directly from a DAS2 client to a DAS2 database maintained at Sanger Center. This is in principle similar to Sanger’s current system for third party annotation. However it should allow much broader use by experimental biologists, by supporting the use of sophisticated genome annotation editing applications that are DAS2 clients, such as the DAS2 client we propose in Specific Aim 4.

This work will be the responsibility of Tony Cox and his staff. As a senior group leader at Sanger Center, he has been responsible for providing web-based public access to genome annotation data via the Ensembl web site 6, and more specifically for much of the DAS-based work at Ensembl.
Specific Aim 6: Interact with a number of other popular genome databases to promote access to their data via DAS2 protocol.

In addition to Ensembl, we intend to interact with a number of database groups to encourage access to their annotation data via DAS2. Lincoln Stein is a project lead for WormBase (C. elegans database), Gramene (rice database), and HapMap (human haplotype database), and will act as a liaison between those groups and this project. In addition, we have already discussed DAS2 support with project leads from several other popular database groups, including the UCSC Genome Browser, RatDB, and FlyBase, and they have responded enthusiastically (please see letters of support from Jim Kent, Nat Goodman, and Suzanna Lewis). Furthermore, Gregg Helt will liaise with a group at Affymetrix to serve data on genomic locations of Affymetrix probes via a publicly accessible DAS2 server. We anticipate interacting with many other groups as well once we have an initial DAS2 specification to work with.
Specific Aim 7: Interact with the bioMOBY project to establish bioMOBY as a registry service for DAS2 servers (and discovery service for DAS2 clients).
As described in specific aim #1, we consider the availability of a directory service that can locate and describe DAS services is key to the continued evolution of genomic data exchange. In our opinion, the BioMOBY directory service presents a promising lightweight alternative to UDDI (a proposed web services discovery standard), but this will become clearer over the next year as BioMOBY is put to the test by several model organism databases (databases currently implementing or planning to implement BioMOBY services include WormBase, the UCSD Phosphoprotein database, RatDB, TAIR and The SNP Consortium database).
Lincoln Stein is a co-PI on the BioMOBY project (with Damian Gessler of NCGR and Mark Wilkinson of the Canadian NRC), and will act as liaison between this project and BioMOBY. As DAS2 is being developed, he will weigh the requirements of DAS2 against the capabilities made available by BioMOBY and share these insights with developers in both projects. This assessment will include test implementations of describing DAS2 services using BioMOBY syntax.

By the end of the first year we will make a decision on BioMOBY. Should we ultimately decide that BioMOBY does not provide the features needed by DAS2, we will either work with BioMOBY to add those features to the protocol, or will turn to another directory service protocol. A lot depends on what happens in the wider web services field, such as whether UDDI is adopted as a standard W3C protocol, or another directory service rises to prominence.

Timeline
November 2003 (1q1):
Our plan is to have a coordination meeting at Affymetrix at the beginning of the grant period. We will review the specific aims of the grant. We will begin working on a preliminary DAS2 specification, and circulate this among the grant participants. We will start with descriptions of use case scenarios to ensure that the specification will support the intended users. We will model the types of data that DAS needs to support, as well as the interactions between DAS clients and DAS servers. By the end of the first quarter we will produce an alpha version of the DAS 2.0 specification.
Milestones: publication of 2.0 alpha specification on biodas.org web site and DAS mailing list.
February 2004 (1q2)
After posting the alpha specification, we will gather feedback from the DAS developer community and work on integrating this feedback into a revised specification. We will also begin work on a prototype DAS2 server and prototype DAS2 client. It is important to have these prototypes as soon as possible to test the specification early in its development for any serious flaws. Work will also begin the DAS2 validation suite.
Milestones:

i) Working DAS 2.0 beta specification

ii) Partially working validators.

iii) Partially working server for prototyping & testing.

iv) Partially functional client for prototyping & testing.

v) Publication of DAS 2.0 beta specification on biodas.org and mailing list
May 2004 (1q3)
Development of the DAS2 client and server will continue. We will also begin to test the DAS2 server against real data sets such as WormBase and FlyBase. The DAS 2.0 beta specification should be pretty close to the final 2.0 specification, so we will begin to add DAS2 support to Ensembl and WormBase based on the beta spec. We will have another coordination meeting, this time at CSHL, review any further feedback from the DAS community, and finalize the DAS 2.0 specification. We will begin running the DAS2 validation suite against the prototype DAS2 server, and start testing the prototype client communicating with the prototype server.
Milestones:
i) DAS2 prototype server passes DAS2 validation tests
ii) Publication of final DAS 2.0 specification on biodas.org and mailing list
iii) Release of DAS2 validation suite
August 2004 (1q4)
Authentication and authorization features will be added to the server implementation and the client implementation. We will also add to the server the ability to register as a web service with bioMOBY. External beta testing at some of the sites mentioned in Specific Aim 6 will begin.
Milestones:

i) Working betas of client & server (read only, not writeback).

 ii) Working DAS 2.0 servers on WormBase & Ensembl.

November 2004 (2q1)
DAS2 writeback capability will be added to the DAS2 client and server implementations. Work will begin on deploying DAS2 writeback capabilities at Ensembl. There will be another coordination meeting, this time at Affymetrix. Regression tests for the DAS2 client/server will be developed. Writeback capabilities in the DAS 2.0 specification will be reviewed in light of the client and server implementations. Documentation for the client and server will be completed.
Milestones:
i) Working beta of DAS2 server with writeback

ii) Working beta of DAS2 client with writeback.

February 2005 (2q2)
Work will continue on refining the DAS2 client and server implementations. DAS server discovery via bioMOBY will be implemented in the client. Work will continue on an Ensembl writeback service. DAS2 client usability testing will begin at Affymetrix and Ensembl, and the client will be revised based on results of this testing.

Milestones:

i) beta release of full DAS 2.0 server implementation
ii) beta release of full DAS 2.0 client implementation
May 2005 (2q3)
Work will continue on client and server implementations, and a public writeback facility at Ensembl. There will be another coordination meeting at Affymetrix, and we will assess status of DAS 2.0 specification and draft a DAS 2.1 specification to address any issues that have been found regarding DAS 2.0.
Milestones:

i) official release of DAS 2.0 server

ii) official release of DAS 2.0 client
iii)publication of DAS 2.1 beta specification on biodas.org and mailing list
iv) beta release of Ensembl writeback facility
August 2005 (2q4)
Modifications will be made to DAS2 client and server implementations to support DAS 2.1. A final revision of the specification will be made and published.
Milestones:

i) publication of DAS 2.1 final specification on biodas.org and mailing list

ii) release of DAS 2.1 version of server

iii)release of DAS 2.1 version of client

iv) release of Ensembl writeback facility

v) publication in peer reviewed journal

Appendix A. Intellectual Property

In the body of the grant we have stated that all of the deliverables for this grant will be freely available and open source. This appendix further details the availability of DAS2 specifications, data, and software.
Specifications
All documentation for the DAS2 specification, including the formal specification, tutorial, etc. will be published on the DAS web site, www.biodas.org. Each significant revision of the specification will be published on the site and announced on the DAS mailing list.
Software

Source code developed jointly under this collaboration will be copyrighted jointly by the collaboration members involved, and software developed by one of the collaborating groups may be copyrighted jointly or by the sole contributor. These copyrights are solely for the purpose of protecting the integrity and attribution of the work. Pre-existing software contributed by collaborators will retain its prior copyright.
All software developed in this grant will be released under an open source license approved by the Open Source Initiative (http://www.opensource.org). Availability of the software will be announced on the biodas web site, and links will be provided on the web site for downloading the software. Announcement of significant software releases will also be made on the DAS mailing list. The source code will furthermore be made available via an anonymous CVS repository linked to from the biodas web site.
E.
Human Subjects

Not applicable.

F.
Vertebrate Animals

Not applicable.

G.
Literature Cited

1.
Genome sequence of the nematode C. elegans: a platform for investigating biology. The C. elegans Sequencing Consortium. Science 282, 2012-8 (1998).

2.
Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R. & Stein, L. The Distributed Annotation System. BMC Bioinformatics 2, 7 (2001).

3.
Stevens, R., Goble, C., Horrocks, I. & Bechhofer, S. OILing the way to machine understandable bioinformatics resources. IEEE Trans Inf Technol Biomed 6, 129-34 (2002).

4.
Berners-Lee, T. & Hendler, J. Publishing on the semantic web. Nature 410, 1023-4 (2001).

5.
Wilkinson, M.D. & Links, M. BioMOBY: an open source biological web services proposal. Brief Bioinform 3, 331-41 (2002).

6.
Clamp, M. et al. Ensembl 2002: accommodating comparative genomics. Nucleic Acids Res 31, 38-42 (2003).

H.
Consortium/ Contractual Arrangements

We will have consortium arrangements with Cold Spring Harbor Laboratory (Lincoln Stein, M.D., Ph.D., Co-Principal Investigator) and Wellcome Trust Sanger Institute (Antony Cox, Ph.D., Investigator). Please see the following Statements of Intent to Establish a Consortium Agreement.

Reference Server

AC003027

AC005122

M10154

Annotation Server 2

Annotation Server 3

AC003027

M10154

WI1029

AFM820

AFM1126

WI443

AC005122

Annotation Server 1

� co-PI Lincoln Stein later became the chief software architect for the WormBase database

PAGE
25

