
Google SummeGoogle SummeGoogle SummeGoogle Summerrrr of Code 2014 Proposal:of Code 2014 Proposal:of Code 2014 Proposal:of Code 2014 Proposal:

Addition of a Lazy Loading Sequence Parser to Biopython’s SeqIO Addition of a Lazy Loading Sequence Parser to Biopython’s SeqIO Addition of a Lazy Loading Sequence Parser to Biopython’s SeqIO Addition of a Lazy Loading Sequence Parser to Biopython’s SeqIO PackagePackagePackagePackage

Evan Parker

IntroductionIntroductionIntroductionIntroduction::::

One of the core motivations for the production and maintenance of Biopython, and indeed all Open

Bioinformatics Foundation projects, is the reduction of code duplication by scientists performing common tasks. It

follows that the sequence parsing module SeqIO is an important component of Biopython since one of the most

often repeated tasks is parsing flat file sequence data. While most use-cases have adequate performance using a

straightforward implementation of sequence parsing, a border case that is not currently addressed is the efficient

parsing of large sequences. The current parsers in SeqIO load sequences either as a generator in the case of

SeqIO.parse(), or as a custom dictionary in the case of SeqIO.index(). For the largest individual sequences this is not

an efficient strategy since parsing the entire sequence may entail loading millions of base pairs into memory. Many

of these may not be required for the task at hand.

 A potentially better strategy when parsing the largest sequences would be to lazily load only the portion of

the file required. Using slice notation, a user will be able to request only the segment of the sequence required for

the task. A lazy loading parser would walk the line between increased transaction overhead and decreased memory

requirements but in many cases the new parser would improve overall performance. Especially in the use case of

large sequences I am confident that overall performance will increase as unnecessary parsing and storage can be

eliminated or the necessary parsing can be streamlined into the a comprehensive analysis pipeline. For single

threaded processes lazy loading sequence data can mean faster access to intermediate results and for parallel

processes lazy loading can lead to even greater performance increases than possible currently.

Project GoalsProject GoalsProject GoalsProject Goals::::

• Implement location aware parsers for sequential sequence file formats that lazily load called sequence

portions. Parsers should cover, at minimum, FASTA, GenBank, Embl, Swiss, UniProt-XML, and tab formats.

• Implement a lazy loading SeqRecord proxy class that can be returned by the SeqIO function; these objects

will accept slice notation to invoke the lazy loading parsers and return the requested sequences.

• Profile the new code to identify trouble spots and to make explicit the use cases where lazy loading improves

performance.

• Document the new functionality.

Implementation:Implementation:Implementation:Implementation:

 The implementation of this functionality will reuse as much code as possible from the format-specific

parsers included in the SeqIO package and elsewhere in Biopython. As a necessary step to implement lazy loading

parsers, a proxy class, hereon referred to as SeqRecProxy, will be used to initialize the actual lazy loading and grant

access to SeqRecord objects. Figures 2 and 3 indicate how a lazy lading SeqRecord proxy would alter the current

workflow.

The lazy loading of FASTA data is an illustrative example of the most trivial implementation of parsing a flat

file with sequential unannotated sequences. The implementation of FASTA parsing will be comprised of two new

generators in SeqIO/FastaIO.py. The first will yields SeqRecProxy objects, the second will be a file seeking simple

parser that used by the SeqRecProxy. The added parsing functionality will be accessed with a Boolean “lazy=True”

keyword argument in either index() or parse(). The lazy kwarg will default to False preventing the added functionality

from disrupting any existing programs.

SeqIO.parse() and SeqIO.index(), when called with “lazy=True”, will return SeqRecProxy objects. On

instantiation of the SeqRecProxy the lazy loading parser will read the first two lines of the first FASTA entry. The first

line will be completely parsed to form the ‘id’, ‘name’, and ‘description’ used in all derived SeqRecord objects. The

second line will be parsed to determine the number of residues encoded per line; while the recommended length of

FASTA sequence lines is 80 characters, implementations differ depending on source so recognition of this number

will assist in seeking to the correct file location. The column width is then stored as an instance attribute of the

SeqRecProxy. Finally, when passed slice notation, the lazy loading parser’s __getitem__() function will seek to the

correct file line and sequentially extract the requested residues.

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas ma ximus maximus]

LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV

Figure 1: this partial FASTA record uses the standard line length of 80 characters for sequence information

 Iterating heavily annotated formats like GenBank or SwissProt flat files will be a more difficult task. For most

file formats one cannot assume that annotations are 100% ordered, thus true-lazy loading of annotations will suffer

from low performance as annotation data is reparsed multiple times. Detailed pre-parsing and indexing would make

sense if millions of reads are expected, but I expect that in most use cases, the process of indexing would actually

detract from overall performance. Lacking format-enforced order in the annotations, a tradeoff must be made

between pre-parsing the annotations to deliver from memory, or re-parsing the annotations on every call. My

proposed solution would be for SeqRecProxy to have an @property decorated annotations() method that would

parse all annotations. Once annotations are parsed, SeqRecProxy will include appropriate annotations with slice

retrieved SeqRecords.

TimelineTimelineTimelineTimeline

It should be noted that between the community bonding period and June 22, I will continue to have obligations due

to my graduate studies and preparation for the American Society of Mass Spectrometry conference where I will be

giving a talk. After this obligation, my time will be 100% dedicated to the GSOC project.

Community

bonding:

Read Biopython documentation, prepare development environment and connect with my

mentor. Work on a detailed specification along with the core class prototypes and tests that will

need to be passed (working at 50% capacity due to ongoing graduate work)

May 19 -25 Write the core SeqRecProxy (working at 50% capacity due to ongoing graduate work)

May 26- 1 Write the lazy loading FASTA parser (working at 50% capacity due to ongoing graduate work)

June 2 – 8 Text and profile new code (working at 50% capacity due to ongoing graduate work)

June 9 - 15 Write parsers for other un-annotated file formats (working at 50% capacity due to ongoing

graduate work)

June 16 - 22 Continue working on un-annotated file formats, write additional unit tests (working at 10%

capacity due to American Society of Mass Spectrometry conference, this conference will mark

the end of my pre-summer obligations).

June 23 - 29 Add lazy loading of sequence information to the Bio.GenBank.Scanner parser.

June 30- July 6 Add lazy loading of annotation information to Bio.Genbank.Scanner. Write unit tests.

July 7-13 Spend time profiling GenBank lazy loaders, optimize any slow code. Use lessons learned here

while writing lazy loaders for other annotated formats.

July 14-20 Add lazy loading to Swiss formats

July 21-27 Add lazy loading to UniProt-XML formats

July 28 – Aug 3 Write additional unit tests for annotated formats from Swiss and Uniprot-XML

Aug 4- Aug 11 Continue cleaning up code, write documentation.

About me:About me:About me:About me:

 I am a third year PhD student in the Chemistry department of UC Davis. Programming in Python was a hobby

during my undergraduate education and it has become a major portion of my graduate work. I work in the lab of

Carlito Lebrilla and I write programs used internally for the interpretation of mass spectrometric data. I am currently

working on improved scoring algorithms for glycopeptides fragmented by collision induced dissociation. In one of my

recent projects I have assisted in the production of a peptidomics workflow by writing a proteolytic enzyme analysis

script, this code was made public in preparation of publication and can be seen on my GitHub page1. I will be

presenting my work on encoding binary information with a nontoxic polymer marker at the upcoming American

Society of Mass Spectrometry meeting in June.

1
 https://github.com/eparker05/

>> seqGen = SeqIO.parse(handle, “fasta”)

>> isinstance(seqGen, GeneratorType)
True

>> seqZero = next(seqGen)

>> isinstance(seqZero, SeqRecord)
True

>> actualSeq = seqZero.seq

>> isinstance(actualSeq, Bio.Seq.Seq)
True

>> seqDict = SeqIO.index(handle, “fasta”)

>> seqZero = seqDict[“testAccession”]

>> isinstance(seqZero, SeqRecord.SeqRecord)
True

>> actualSeq = seqZero.seq

>> isinstance(actualSeq, Bio.Seq.Seq)
True

>>seqDict = SeqIO.index(handle, “fasta”,
lazy = True)

>>lazySeqZero = seqDict[“testAccession”]

>> isinstance(lazySeqZero, SeqRecProxy)
True

>>subSeq = lazySeqZero[500:1000]

>> isinstance(subSeq, SeqRecord)
True

>>actualSeq = subSeq.seq

>>isinstance(actualSeq, Bio.Seq.Seq)
True

>> seqGen = SeqIO.parse(handle, “fasta”,
lazy = True)

>> isinstance(seqGen, GeneratorType)
True

>>lazySeqZero = next(seqGen)

>> isinstance(lazySeqZero, SeqRecProxy)
True

>>subSeq = lazySeqZero[500:1000]

>> isinstance(subSeq, SeqRecord)
True

>>actualSeq = subSeq.seq

>>isinstance(actualSeq, Bio.Seq.Seq)
True

Figure 2: The current API accepts a file handle along with the format and returns an iterable generator or a
dictionary-like object. This can be used directly to access the SeqRecord. Subsequences retrieved via slice notation
will also be SeqRecord types.

Figure 3: In the proposed project, lazy loading intermediates are returned by SeqIO parse and index functions. This
intermediate can be used to access lazily loaded subsequences of the larger underlying sequence.

